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Abstract

Graph-based data representations are an important research topic due to the suitability of
this kind of data structure to model entities and the complex relations among them. In
computer vision, graphs have been used to model images in order to add some high level
information (relations) to the low-level representation of individual parts. How to deal with
these representations for specific tasks is not easy due to the complexity of the data structure
itself. In this paper we propose to use a graph mining technique for image classification,
introducing approximate patterns discovery in the mining process in order to allow certain
distortions in the data being modeled. We are proposing to combine a powerful graph-based
image representation adapted to this specific task and Frequent Approximate Subgraph
(FAS) mining algorithms in order to classify images. In the case of image representation we
are proposing to use more robust descriptors than our previous approach in this topic, and
we also suggest a criterion to select the isomorphism threshold for the graph mining step.
This proposal is tested in two well-known collections to show the improvement with respect
to previous related works.

Keywords: Approximate graph mining, frequent approximate subgraphs, graph-based
image representation, image classification.

1. Introduction

In many research fields, graphs have been largely used to model data due to their rep-
resentation expressiveness and their suitability for applications where some kind of entities
and their relationships must be encoded within some data structure. Also, a vast graph
theory has been developed in order to work with graphs and process the information they
represent. In this paper, we intend to explore and combine two research fields where graphs
are involved, in order to exploit both their advantages.

The first field is related to Computer Vision. Our intention is to classify images using
a graph-based representation. The first step for image classification is to extract low-level
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features that will encode relevant information for the task, but it has been shown that
low-level information by itself cannot provide the high-level perception cues that exist in
human minds to describe objects or images in general (this is the well-known semantic gap
problem) [16]. Within the range of low-level features developed so far, graphs are one of
the representations that can provide some kind of high-level information implicitly, making
them a desirable representation choice for researchers to find new solutions. Many works
have represented images as graphs (see Section 2) with this purpose, and have developed
methods for classification using this type of data structure. One major concern in this
area is that although graphs are powerful representational tools, they are hard to work
with, leading usually to algorithms with high computational costs, or simplifying the data
structure, thus losing some of the embedded information. Having a collection of images
represented as graphs rises the question of whether graph mining techniques can be used to
discover beneficial information and to perform certain tasks such as image classification.

Now we will approach the other research field that we are aiming to explore: Data Min-
ing. Several authors have developed graph-based techniques and methods for satisfying the
need to convert large volumes of data into useful information [24, 46]. Frequent subgraph
discovery is an example of such techniques [15]. An important problem in graph mining tasks
is classifying information, such as image [2, 13, 25, 35, 37], text [26], and molecular [11, 23]
datasets. Although using graph mining for classification purposes has been widely explored,
these approaches may not always produce the optimal results in all applications and sev-
eral authors [22, 27, 7] have expressed the necessity to use approximate graph matching for
frequent subgraph mining. These authors defend the idea that, by using approximation,
more interesting subgraphs can be found for many applications, for instance, when process-
ing graph databases that have distortions (in terms of different geometric, topological or
semantic variations) of similar structures in several objects [2, 23]. Distortion in data is one
of the challenges for developing classifiers based on frequent subgraphs in several domains of
science [2, 9, 19, 23, 29, 41, 43, 44, 47, 48]. Frequent Approximate Subgraph (FAS) mining
is an important problem in graph mining, where the mined patterns are detected taking into
account such semantic distortions. Thus, such approximate solutions achieve classification
results which are different from the other graph mining methods.

As mentioned before, in this paper we aim at combining and exploiting both research
fields (Image Classification and Frequent Approximate Subgraph Mining) by proposing an
image representation that can be used in a classification framework. Although graph mining
techniques for image classification have been explored before (see Subsection 2.3), our main
contribution resides precisely in the approximation part of the subject. This work is, in
fact, an extension of a previous work [3] where we make use of a powerful graph-based
representation adapted to the conditions of the problem. The new contributions and changes
with respect to that work are the following:

• We use a different visual description of the regions in order to add context information
to it. We employ a visual descriptor already reported in the literature, making some
changes to take advantage of the structure of irregular pyramids.

• We propose a criterion to obtain the isomorphism threshold needed in the FAS mining
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step, which is the parameter employed to determine whether two graphs are similar
enough to be considered in the frecuency count.

We performed new experiments to show how these improvements largely and positively
influence the classification results, while comparing it also with other state-of-the-art meth-
ods in image classification.

The remainder of the paper is distributed as follows. Section 2 is a summary of related
works in the fields of graph-based image classification, graph mining and the combination
of both. Section 3 presents some basic notions regarding graph mining techniques and some
specific details of the FAS mining process. The graph-based image representation used in
our proposal is described in Section 4. Section 5 depicts the classification framework, where
both topics discussed in Section 3 and 4 are combined. In order to validate our approach,
we present experimental results in Section 6 and conclusions are given finally in Section 7.

2. Related work

In this section, we start by providing a brief on classification methods using graph-based
representations. Next, we present a review of previous works related to approximate graph
mining and finally, we present a brief on classification using frequent patterns, which is the
subject of this paper.

2.1. Brief overview of image classification using graph-based representations

Representing images as graphs has become popular because they are powerful tools to
encode different types of information, and may provide a robust and rich representation for
many applications. How to exploit this information is the main issue in the graph-based
classification scope. A popular graph-based image representation is the Region Adjacency
Graph (RAG) [6] where each vertex represents a region in the image and an edge exists
between two vertices if the underlying regions are adjacent.

Different methods have been developed to use graphs for classification tasks, for instance,
graph matching algorithms [21, 12, 32, 18, 17], which use distances (ex. graph edit distance),
greedy matching techniques or matching kernels in order to compare graphs. Another way
to perform classification is by using graph embedding methods [8, 20], which, in general
terms, map graphs to a vector space and then perform regular classification operations with
the resulting vectors.

Although graphs are considered to be a powerful representation, they have a major
drawback, which is the lack of suitable classification methods where they can be used. Graph
matching techniques usually have the problem of the computational complexity involved in
the process and graph embedding methods usually tend to suppress part of the information
encoded by the graphs. Graph mining techniques used for classification purposes could be
considered a halfway between graph matching and graph embedding methods, thus using
the strength of both and reducing their individual disadvantages.
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2.2. Summary of approximate graph mining

Traditional exact graph mining has become an important topic of research in recent
years [7, 15, 34, 45]. However, there are concrete problems where these solutions could
not be applicable with positive outcomes [19]. Sometimes, the interesting subgraphs show
slight differences throughout the data. An example of these differences can be seen on image
processing, where these differences may be due to noise and distortion, or may just illustrate
slight spatial differences between instances of the same objects. This means that we should
tolerate slight semantic variations or some mismatches of vertices (and edges) in frequent
subgraph pattern search.

In the last years, some approximate graph mining algorithms have been published
where several similarity functions are used. For example, the algorithms SUBDUE [19]
and RNGV [43] are based on graph edit distance; Monkey [47] is based on β-edge sub-
-isomorphism; UGRAP [41] and MUSE [48] are based on sub-isomorphism on uncertain
graph collections; GREW [29] is based on sub-isomorphism employing ideas of edge con-
traction and graph rewriting; CSMiner [44] uses node/edge disjoint sub-homeomorfismo;
gApprox [9], APGM [23] and VEAM [2] are based on substitution probabilities.

gApprox, APGM and VEAM algorithms defend the idea that a vertex label or an edge
label can not always be replaced by any other. Therefore, these algorithms specify which
vertices, edges or labels can replace others using substitution matrices to perform frequent
subgraph mining. However, only APGM and VEAM perform frequent approximate sub-
graph mining on graph collections and we are interested in this kind of mining. APGM
only deals with the variations between the vertex labels, while VEAM performs the mining
process using both the vertex and edge label sets.

In this paper, the last two algorithms are applied in order to create an image represen-
tation that will be used for classification purposes. This is due to the need of an algorithm
that allows some variations in the data using substitution probabilities and keeping at the
same time the topology of the graphs.

2.3. Brief review of classification using frequent patterns

As mentioned before, frequent subgraph patterns has been successfully used for classi-
fication tasks in different domains of science [2, 11, 13, 23, 26, 35, 37]. However, among
these solutions, there are only two that use frequent approximate subgraphs in classification
tasks [2, 23]. These methods perform feature (subgraph) selection taking into account se-
mantic distortions. APGM algorithm [23] allows these distortions only between vertices of
graphs, while VEAM algorithm [2] allows distortions between vertices and between edges.
Feature vectors are built from the identified FAS , which are later used for classification.
However, only the scheme presented by Acosta-Mendoza et al. [1, 2, 3] reflects the degree of
semantic distortions (in case they exist) and not only the occurrence or not of each subgraph
in the graphs.

Our present work is an extension of [3], and as new enhancements with respect to the
later, we implement (and adjust to our specific conditions) a new low-level representation
for images and we introduce a new criterion to select the isomorphism threshold, which is
basically the keystone in the FAS mining process.
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3. Background on FAS mining

In this section we intend to provide the reader with the basic tools for understanding the
principles of graph mining techniques and, specifically in this context, how approximation
methods work in order to take into account possible data distortions.

3.1. Basic concepts

In this work we use simple undirected labeled graphs as basis for subgraph mining. From
now on, when we refer to graph we assume this type of graph. Before presenting their formal
definition, we will define the domain of labels.

Let LV and LE be label sets, where LV is a set of vertex labels and LE is a set of edge
labels. The domain of all possible labels is denoted by L = LV ∪ LE.

A labeled graph in L is a 4-tuple, G = (V,E, I, J), where V is a set whose elements are
called vertices, E ⊆ {{u, v} | u, v ∈ V, u 6= v} is a set whose elements are called edges (the
edge {u, v} connecting the vertex u with the vertex v), I : V → LV is a labeling function

for assigning labels to vertices and J : E → LE is a labeling function for assigning labels to
edges.

Let G1 = (V1, E1, I1, J1) and G2 = (V2, E2, I2, J2) be two graphs, we say that G1 is a
subgraph of G2 if V1 ⊆ V2, E1 ⊆ E2, ∀u ∈ V1, I1(u) = I2(u), and ∀e ∈ E1, J1(e) = J2(e). In
this case, we use the notation G1 ⊆ G2.

Given G1 and G2, we say that f is an isomorphism between these graphs if f : V1 → V2

is a bijective function, where ∀u ∈ V1, f(u) ∈ V2 ∧ I1(u) = I2(f(u)) and ∀{u, v} ∈
E1, {f(u), f(v)} ∈ E2 ∧ J1({u, v}) = J2({f(u), f(v)}). When there is an isomorphism be-
tween G1 and G2, we say that G1 and G2 are isomorphic.

Let Ω be the set of all possible labeled graphs in L, the similarity between two elements
G1, G2 ∈ Ω is defined as a function sim : Ω × Ω → [0, 1]. We say that the elements are
very different if sim(G1, G2) = 0, the higher the value of sim(G1, G2) the more similar the
elements are and if sim(G1, G2) = 1 then there is an isomorphism between these elements.

Let D = {G1, . . . , G|D|} be a graph collection and let G be a labeled graph in L, the
support value of G in D is obtained through the following equation:

supp(G,D) =
∑

Gi∈D

sim(G,Gi)/|D| (1)

If supp(G,D) ≥ δ, then the graph G is approximately frequent in the collection D,
saying that G is a FAS in D. Notice that when we refer to a graph collection we assume
that it is the representation built from a real graph collection. The value of the support
threshold δ is in [0, 1] assuming that the similarity is normalized to 1. FAS mining consists
in finding all the FASs in a collection of graphs D, using a similarity function sim and a
support threshold δ.

There are several similarity functions used by different algorithms in the graph matching
process [10]. In Section 2.2, we presented the most relevant algorithms which use approxi-
mate graph matching techniques in frequent subgraph mining. All of these algorithms use
the definitions presented above, implementing a specific similarity function.
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3.2. Approximate FAS methods considered

In APGM [23] and VEAM [2] algorithms, the idea that not always a vertex label or
an edge label can be replaced by any other is upheld. Therefore, these algorithms specify
which vertices, edges or labels can replace others using substitution matrices to perform
the frequent subgraph mining task. APGM only deals with the variations among vertex
labels, while VEAM performs the mining process using the vertex and edge label sets. These
methods use substitution matrices where each cell represents the suitability of approximating
one vertex by another vertex (or an edge by another edge) and they offer frameworks for
each frequent subgraph mining task.

A substitution matrix M = (mi,j) is an |L| × |L| matrix indexed by a label set L. An
entry mi,j (0 ≤ mi,j ≤ 1,

∑

j mi,j = 1) in M is the probability that the label i is replaced by
the label j. When M is diagonally dominant (i.e. Mi,i > Mi,j , ∀j 6= i) then M is known as
stable matrix.

Let G1 = (V1, E1, I1, J1) and G2 = (V2, E2, I2, J2) be two labeled graphs in L, MV be a
substitution matrix indexed by LV , ME be a substitution matrix indexed by LE , and τ be
the isomorphism threshold. We say that G1 is approximate isomorphic to G2, denoted by
G1 =A G2, if there exists a bijection f : V1 → V2 such that:

• ∀{u, v} ∈ E1, {f(u), f(v)} ∈ E2,

• Sf (G1, G2) =
∏

u∈V1

MVI1(u),I2(f(u))

MVI1(u),I1(u)
∗
∏

e={u,v}∈E1

MEJ1(e),J2({f(u),f(v)})

MEJ1(e),J1(e)
≥ τ .

The bijection f is an approximate isomorphism between G1 and G2, and Sf(G1, G2) is
the product of normalized probabilities called approximate isomorphism score of f . When
G1 is approximately isomorphic to a subgraph of G2, we say that G1 is approximately sub-

isomorphic to G2. Notice that this is a generalization of the APGM approach [23].
The approximate matching score between two graphs, denoted by Smax(G1, G2), is the

largest approximate isomorphism score.

Smax(G1, G2) = maxf{Sf(G1, G2)} (2)

Given a graph collection D and an isomorphism threshold τ , the approximate support of
a graph G, denoted by supp(G,D), is the average score of the graph in the collection, where
G is approximately isomorphic to a subgraph of graphs in the collection:

supp(G,D) =
∑

Gi∈D

Smax(G,Gi)/|D| (3)

If supp(G,D) ≥ δ, then graph G is approximately frequent in the collection D, saying
that G is a frequent approximate subgraph in D, with δ as support threshold. Notice that
the values of the products of normalized probabilities Sf (G1, G2) is in the interval (0, 1].
The value of the support threshold δ is in [0, 1] assuming that Smax(G,Gi) is normalized.
The frequent subgraph mining task used in this paper consists in finding all the connected
frequent subgraphs in a collection of graphs D, using (3), δ as support threshold, and τ as
isomorphism threshold.
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4. Graph-based image representation

In the present work we choose to explore the approach proposed in [31, 32] to obtain a
graph-based image representation that can serve as input to a graph mining algorithm. In
this case we construct an irregular pyramid for each image [5], which provides a hierarchy
of partitions at different levels of resolution. Each level is a RAG and the whole pyramid is
built from bottom to top, being the base level (level 0) the entire image (i.e. each vertex of
the base level represents one pixel in the image, and the edges are the 4-connections of each
pixel). Each level l is built from its previous level l − 1 by contracting several edges in the
process. In a given level, a set of surviving vertices is chosen to be part of the new level, and
the set of vertices to be merged into a surviving one is called its Contraction Kernel (CK).
In the new level l, each surviving vertex will represent all the vertices from level l− 1 in its
contraction kernel, and will keep a connection to them. Further information regarding the
construction of the pyramid can be obtained in [5, 28].

Since the pyramid provides several graphs at different levels of resolution for a single
image, we use the B measure proposed in [32] to evaluate the segmentation “quality” of
each level. This evaluation will serve as a guide to choose one graph per image. The
measure evaluates each level of the pyramid against a border map of the image, in terms of
how much each partition preserves the borders present in the map. The best level evaluated
by B is selected to represent the image.

4.1. Low-level features to describe image regions

In our previous work [3], we employed a very basic low-level representation for the image
regions, which consisted in a 48-dimensional color histogram (quantized from the RGB color
space) and a 256-dimensional Local Binary Pattern (LBP) histogram as texture descriptor.
Nevertheless, in order to gain more robustness in our visual representation, we decided to use
a low-level description that allows us to include contextual information in the description.

As stated in [39], context plays a crucial role in many cases, especially when using
irregular segmentations of an image. Usually, segmentation methods tend to create mostly
homogeneous regions that provide poor information when low-level features are extracted
from them. Therefore, including some area outside of each region may provide the necessary
clues for the region representation to be somewhat more discriminative. To illustrate this,
please refer to Fig 1. We can see the original image first, and in the second image we can
see an example of an irregular region (with green border) that may result from applying a
segmentation method. As we can notice here, this region is homogeneous, white, and it does
not have a discriminative texture. Therefore, trying to use this single region for classification
may introduce several errors, since this type of region may be part of a very large number
of different objects. Including more area to the region representation (as the one depicted
in blue in the third image), may introduce some clues about the context of this single white
blob, and may supply more useful information to it.

Based on this, we decided to use the Region-based Context Features (RCF) proposed in
[39], which combines irregular regions and regular patches to obtain a more accurate rep-
resentation. We chose the representation used in [40], which involves a 100-dimensional
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Figure 1: Example of low-level representation problems when using irregular segmentation methods. First
we can see the original image, next, an arbitrary homogeneous region that we may obtain by means of a
segmentation method, and last, an example of using information outside the region to add some context
information.

histogram of quantized hue features for describing color within the regions and a 300-
dimensional RCF histogram. In order to construct the RCF features, we computed dense
SIFT features through the entire image for two different scales and we created a vocabulary
by clustering this set of features. Each dense SIFT patch is then represented by a visual
word in the vocabulary. The first 150 bins of the resulting histogram correspond to the
occurrence of each visual word within the region being analyzed, only for the first scale. In
the original approach, the next 150 bins correspond to the occurrence of each visual word in
the second scale, that appears close enough (by setting a distance) to the region in question,
adding context information in this way.

For this last step we introduced a modification. Instead of using a distance to count the
features of the second scale, we counted the occurrences of the features that appear within
the father region in the pyramid. This means that if we have a region rl in level l of the
pyramid, the first 150 bins of the RCF histogram will count the occurrences of the visual
words (corresponding to the first scale) that are inside rl, and the second 150 bins will count
the occurrences of the visual words (corresponding to the second scale) that are inside rl+1

in level l + 1, where rl belongs to the Contraction Kernel of rl+1. In this way, we take
advantage of the spatial relations of the pyramid (by means of the graphs at each level) and
the hierarchical relations, introducing context to the representation.

After this step, we have a 400-dimensional feature vector (by concatenating color and
RCF histograms) for each region. We also add another 400 dimensions to this descriptor, by
including a 100-dimensional color histogram and a 300-dimensional RCF histogram of the
entire image, in order to add overall image context, yielding a final 800-dimensional feature
vector for each region.

4.2. Spatial relations to describe edges

In a RAG, the edges implicitly encode adjacency relations between image regions, but
we can add an explicit and more detailed information about the relations shared by two
regions, in order to exploit it in the FAS mining algorithm. For the edge representation, we
chose to use the spatial descriptor proposed in [31, 32], which is a binary vector encoding
several topological and orientation relationships between pairs of regions.
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4.3. Automatically building substitution matrices

FAS mining algorithms work with substitution matrices, which intuitively represent the
probability of substituting one label with another, using some meaningful criteria for the
matter (see the formal definition in Subsection 3.2). For this case, we have a graph-based
image representation and we are interested in knowing which vertices can be substituted
by others in terms of visual similarity of the underlying regions. We also want to know
which edges can be considered equivalent (in the approximation framework), in terms of the
similarity of the spatial relations that they encode.

To create the substitution matrix for the vertices, it is necessary to reduce the set of
vertices labels. According to the pyramid representation explained before, there will be
as much labels as possible different feature vectors. In order to reduce the set of vertices
labels, we use a clustering algorithm to group similar features. The centroid of each cluster
will be the new label of all the vertices with features belonging to this cluster. Then, the
substitution matrix will be a n× n matrix, where n is the number of labels (clusters). Each
element of this matrix will store the similarity between two labels, given by the similarity
between the centroids of the clusters they belong to. In this case, we decided to use the
Euclidean distance between the feature vectors for each node. This means that an element
of this matrix can be interpreted as the confidence of substituting a node with label x with
a node with label y in a matching scheme.

The substitution matrix for edges is easier to construct, since using the spatial descriptor
representation we can only have 27 possible configurations of spatial relations. The similarity
between edges, i.e. the value that will be stored in the elements of the matrix, can be
obtained by the Sokal-Michener measure proposed for this purpose in [31] for computing the
similarity between spatial descriptors.

5. Classification Framework

After presenting the basic concepts and details regarding the graph-based image repre-
sentation and the FAS mining methods used, we can finally describe the overall classification
framework where we combine these tools.

First of all, we obtain the graph-based image representation of a given set of pre-labeled
real images, which gives us a graph collection to work with. Next, we label all the vertices
and edges, and create the corresponding substitution matrices as presented in Subsection 4.3.
Once we have these substitution matrices we proceed to select the appropriate parameters
for the graph mining algorithm (see Subsection 5.1 for further details in this step). Next,
we apply the FAS miners to the entire collection in order to obtain all the FASs present in
it, according to some given support threshold δ. Similar to the vocabulary creation step in
the Bag of Words (BoW) model [38], the FASs obtained by the miners can be regarded as
the words in a vocabulary, thus giving us some sort of bag of subgraphs approach. After
this, each image will be represented by a histogram where each bin corresponds to each FAS
of the vocabulary. Therefore, the dimension of the new feature will be the number of FASs
found in the collection. For each FAS in the image, the similarity of the subgraph found
with respect to the one represented in the vocabulary is stored in the corresponding bin,
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Figure 2: Framework of graph-based image classification.

and the final vector for the image is created after the pooling step, where the maximum
similarity of each subgraph found is taken into account.

When all the new features are built, a classifier generator (SVM using 10 cross-validation)
is used having such vectors as data to produce an image classifier. The complete flowchart
of our classification framework is shown in Fig. 2.

5.1. Parameter selection

In our framework, two parameters play a decisive role in the classification performance.
Both are used in the FAS mining step and they are presented in Section 3. They are the
support threshold δ and the isomorphism threshold τ .

For the case of the support threshold, it determines the frequency of the graphs considered
to be frequent by the miner. If we choose a high value for δ (for instance 80%), we might
obtain graphs that are very frequent, therefore, less discriminative, since they appear in
most objects in the collection. On the contrary, if we choose a small value (for instance,
less than 10%), we are considering too many graphs to be frequent, and more noise can be
introduced in this step. In order to illustrate the behavior of this parameter, we ran our
experiments using different support thresholds, starting from 80% to 20%, with a 10% step.

The isomorphism threshold is a very delicate parameter, because it will determine what
is considered to be similar or not. Therefore, a bad selection of this parameter may lead to
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bad classification results, very long processing times and very high memory requirements,
if it finds too many graphs as approximate patterns. This threshold is highly dependent
on the collection and the representation used for low-level features, but fortunately, we
can count on the substitution matrices to make an analysis of how the similarities behave
according to the labels found for each collection. The first step is to normalize each row of
the substitution matrices (MV and ME) with respect to their main diagonal and then we
find the mean and standard deviation per row (without the value of the main diagonal). We
analyze the maximum value of these means and standard deviations (denoted by µ(M) and
sd(M) respectively), and, if the standard deviation is not too high (i.e. lower than 0.3), this
means that the similarity values are well distributed and we can take the mean value as our
isomorphism threshold. In case the standard deviation is high, we suggest the criteria of
an expert in the current dataset for selecting this parameter. This process is done for both
MV and ME and we select the minimum mean value from these two (see Equation 4).

τ =

{

min(µ(MV ), µ(ME)) if sd(MV ) ≤ 0.3 ≥ sd(ME)
expert decision otherwise

(4)

In Section 6 we perform an experimental validation of the entire framework, which shows
the advantages of the new image representation employed and the effects of selecting the
isomorphism threshold in this way.

6. Experimental Results

Development in the field of approximate graph mining is still incipient when it comes
to applying it to problems with real images. Tests to validate this approach have been
performed so far in simple collections [25, 2]. Actually, in the graph mining community,
the standards to perform tests are synthetic datasets or molecular datasets [42]. When
we try to use these techniques in real images, they have to deal with bigger graphs, with
sizes ranging from 200 to 300 edges per graph, and the current state-of-the-art methods for
graph mining are not well prepared to cope with such big graph sizes, in large collections, in
terms of memory requirements and computational time. Even more, if this is considered a
computational problem for graph mining techniques, the use of approximation among graphs
increases the complexity.

In order to validate our proposal, we chose two well known databases containing color
images of simple objects taken from different viewpoints. The first one is the COIL-100 [33]
dataset, which possess 100 objects with 72 poses per object. We took 25 objects randomly
selected from this dataset to test our classification framework. The second dataset is ETH-
80 Image Set [30], which contains 80 objects from 8 categories and each object is represented
by 41 different views, yielding a total of 3280 images. This database is more challenging
than the COIL-100 database in the sense of the viewpoint diversity. For the experiment in
this database we took the same 6 categories employed by [31] and [3]: apples, cars, cows,
cups, horses and tomatoes, for the sake of comparison. Example images from both datasets
can be seen in Figure 3. We represented all images by a single graph, which corresponds to
the ”best” segmented level of each pyramid (see Section 4).
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Figure 3: Example images from the COIL-100 Image Set database (first 6 images), and from the ETH-80
Image Set database (last 6 images).

In Table 1 and 2, we can see the results of the experiments using the proposed framework.
These results aim at showing a comparison among three different graph miners, i.e, gdFill [15]
(representing the exact methods), APGM and VEAM (both representing FAS methods).
The different support thresholds (δ) used in our experiments are shown in columns and
the algorithms used are presented in rows. Each cell shows the accuracy achieved by each
method and the highest accuracy per column is represented in bold style. In Table 2, the
results for δ lower than 40% are not shown, since for these cases they were not relevant
enough.

Table 1: Accuracies achieved by gdFil, APGM and VEAM algorithms in COIL database using 25 random
classes.

Support (δ)
Algorithm 80% 70% 60% 50% 40% 30% 20%

gdFil - - - - - 21.61% 32.61%
APGM 72.78% 84.06% 86.78% 89.72% 94.06% 98.22% 99.11%
VEAM 72.78% 84.06% 86.78% 90.39% 94.89% 98.33% 99.44%

Table 2: Accuracies achieved by gdFil, APGM and VEAM algorithms in ETH-80 database using 6 classes.

Support (δ)
Algorithm 80% 70% 60% 50% 40%

gdFil - - - 25.70 47.59%
APGM 77.28% 81.02% 82.11% 84.39% 76.22%
VEAM 76.06% 80.16% 78.46% 82.68% 75%

For the APGM and VEAM algorithms, the isomorphism threshold used was automati-
cally set to τ = 0.66 according to the criteria described in Subsection 5.1, specifically using
(4), in both databases (COIL-100 and ETH-80). As we can see, the approximate graph
miners achieve a higher accuracy in most cases than the exact ones. These results show the
relevance of treating distortions in real data. In this direction, we can see with VEAM in
COIL-100, that the values of the accuracies obtained are better in most cases than using
APGM. This indicates that taking into account edge distortions in FAS mining can benefit
the classification task in this dataset. On the other hand, the aforementioned distortions
affected negatively the features identified by VEAM in the ETH-80 dataset.

In addition, we present in Figures 4 and 5, a comparison between the results of this
work and the previous work [3] (which is extended in this paper) to show the improvement
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achieved using our current classification framework. These results are from the COIL-100
dataset.
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Figure 4: Comparison between the results obtained by APGM in both classification approaches, using the
COIL-100 dataset. ”Previous approach” refers to the work presented in [3]

In figure 4, the results obtained by using the APGM algorithm in both works are shown.
As we can see, the accuracies achieved by APGM using our current approach are much better
than using the previous classification approach. This fact proves that the automatic parame-
ter selection combined to the proposed image representation provides important information
that is translated in the identification of better features in the mining process.

In figure 5, the results achieved using VEAM in both works over the same dataset are
presented. As we can see, the performance of the classification using both VEAM and
APGM in the current and previous approaches is very similar; however, in this case (using
VEAM) is where we achieved the highest classification accuracy (99.44%).

Although the same charts for the ETH-80 dataset are not shown, the comparison with
our previous work also reveals the improvement achieved. In [3], the best result for this
dataset was 82.03% and with the new proposal the result is 84.39%.

Aside from comparing with our previous approach, we also compared our current ap-
proach with other state-of-the-art classification methods that do not use FAS mining tech-
niques. In [32] the best accuracy obtained in COIL-100 dataset is 91.6% while our proposal
scored 99.44%. In the case of the ETH-80 dataset, the state-of-the-art results range between
76% and 88% according to the comparison performed by [32], and we obtained 84.39% with
our approach, which is comparable to the reported results. Although a comparison with
the traditional Bag of Words approach would have served as a baseline to validate our pro-
posal, we consider it is not fair to compare segmentation-based methods with patch-based
methods, because it has been shown before that the later usually displays better results [14].

Regarding the running times of these experiments, we can illustrate this aspect in general
terms for the ETH-80 dataset. In this case, the step of building the graph-based image
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Figure 5: Comparison between the results obtained by VEAM in both classification approaches, using the
COIL-100 dataset. ”Previous approach” refers to the work presented in [3]

representation (building irregular pyramids, evaluating each level and extracting features
for the regions) can take about 4 hours. In the next step, we need less than an hour to
create labels for the graph’s vertices and computing substitution matrices. The FAS mining
step usually takes the longest time in the process, ranging from 4 hours to 4 days, from 80%
to 20% supports. After the FAS are obtained, the construction of the FAS histograms and
the classification step can be done in less than 5 minutes. This shows that the computational
overhead of using a graph-based representation approach is restricted to the extraction of
the subgraphs in the training stage, while the classification of new instances can be done
very quickly. Nevertheless, a current shortcoming of our approach is related precisely to the
computational cost of using these graph mining techniques. At the present moment it is
not possible to use larger or more complex datasets to perform experiments, due to memory
requirements (as mentioned at the beginning of this section). Currently, we are working on
reducing the computational overhead in the mining process in order to test our approach
in other scenarios. We believe that this aspect has presented new challenges for the graph
mining community, in terms of making their approximate algorithms applicable to larger,
real and more complex problems.

The results presented in this work show that our current proposal is able to provide good
results for real image classification, and also reveals the importance of using approximate
approaches in graph mining when dealing with real images. The analysis and selection of
decisive parameters in the process also plays an important role, as well as a proper choice
of the underlying image representation.
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7. Conclusions

In this work we proposed an image representation using FASs as features that can be
used in a classification framework. The FAS are obtained by means of FAS miners reported
in the literature. The FAS miners are able to identify FAS patterns in graph collections
allowing distortions in the data (in terms of edge and vertex label). We propose to automat-
ically compute substitution matrices and the isomorphism threshold for the mining process,
based on image features embedded in the framework, which proves that it can also produce
good outcomes for the classification task when expert knowledge is not used. A new visual
description of regions is employed, showing the relevance of making accurate choices in this
direction, since the underlying representation is the basis for obtaining useful features in
the mining process. The classification accuracy results obtained with our current approach
using FAS miners outperform the results of traditional miners in most cases. Also, the ex-
perimental results show that our proposal is comparable with other state-of-the-art methods
for image classification.

In the future, we plan to take advantage of FAS selection strategies for improving graph
classification (such as, using discriminative FASs, representative FASs, contrast FASs, etc.).
These strategies in combination with FAS miners can improve the efficiency of graph classi-
fiers and may be a way of reducing dimensionality as well. We also plan to keep working on
reducing the computational cost of the FAS miners, in order to test this approach in larger
and more varied image datasets.
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