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Abstract

The use of approximate graph matching for frequent subgraph mining has been identified in
different applications as a need. To meet this need, several algorithms have been developed,
but there are applications where it has not been used yet, for example image classification.
In this paper, a new algorithm for mining frequent connected subgraphs over undirected and
labeled graph collections VEAM (Vertex and EdgeApproximate graphMiner) is presented.
Slight variations of the data, keeping the topology of the graphs, are allowed in this algo-
rithm. Approximate matching in existing algorithm (APGM) is only performed on vertex
label set. In VEAM, the approximate matching between edge label set in frequent subgraph
mining is included in the mining process. Also, a framework for graph-based image classifi-
cation is introduced. The approximate method of VEAM was tested on an artificial image
collection using a graph-based image representation proposed in this paper. The experimen-
tation on this collection shows that our proposal gets better results than graph-based image
classification using some algorithms reported in related work.

Keywords: Approximate graph mining, approximate graph matching, image
representation, image classification, feature selection.

1. Introduction

In recent years, the need to convert large volumes of data into useful information has
increased. The objects in many of these datasets are or may be represented as graphs. In
Fig. 1, an example of graphs for representing images are shown.

As a result of this need, several authors have developed techniques and methods to
process these datasets [1, 22]. An example of such techniques is the frequent pattern dis-
covery [13, 30, 34].

The discovery of frequent patterns, especially the detection of frequent subgraphs in
graph collections is an important problem in graph mining tasks [11, 27, 33]. In frequent
subgraph mining, there are two approaches for evaluating the similarity of graphs, known
as graph matching: exact matching and approximate matching.
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Figure 1: Collection of graph D = {G1, G2, G3}.

The exact matching consists in determining whether the labels and the structure of two
graphs are identical. This matching has been successfully used in many applications [7,
12, 16, 20, 23]; however, there are concrete problems where exact matching could not be
applicable with positive outcome [14]. Sometimes, the interesting subgraphs show slight
differences throughout the data. An example of these differences can be seen in protein
analysis, where these may be due to accumulated mutations in the evolution of similar
structures in several proteins. Other examples can be seen on image processing, where these
differences may be due to noise and distortion, or may just illustrate slight spatial differences
between instances of the same objects. This means that we should tolerate certain level of
geometric distortion, slight semantic variations or vertices and/or edges mismatch in frequent
subgraph pattern search.

For this reason, it has become necessary to evaluate the similarity between graphs al-
lowing some structural differences, i.e. approximate matching techniques. The approximate
matching consists in finding the match between vertices and/or edges of two graphs in or-
der to determine their similarity, allowing structure and/or label differences. On this basis,
the need to perform frequent subgraph mining using approximate graph matching has been
raised [4, 15, 23, 24].

Several authors have expressed the necessity to use approximate graph matching for fre-
quent subgraph mining on graph collection. These authors defend the idea that frequent
and more interesting subgraphs for applications and users could be found. Angryk and Hos-
sain recommended frequent subgraph detection using approximate matching on document
clustering tasks [15]. They believe that is possible to obtain a better clustering through
the identification of patterns which allow some topological or semantic variations. These
kinds of frequent approximate patterns have been recommended in tasks of chemical data
processing [4], in tasks of link analysis [23], and have been presented as an open problem in
tasks of data processing in molecules and social networks [24].

In response to this need, several algorithms have been developed for frequent subgraph
mining which use approximate graph matching in different domains of science like: analysis
of biochemical structures [5, 17, 31, 36, 37], genetic regulatory networks [29]; circuit analysis,
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social networks, and link analysis [14].
In this paper, a new algorithm for frequent subgraph mining using an approximate

matching method is proposed. This method extends the mining process presented by Jia et
al. [17, 18], by allowing approximation over edge label set.

On the other hand, frequent subgraph mining has been successfully used in image clas-
sification [2, 8, 9, 19, 21, 28]. However, all of these works use exact algorithms in the
frequent subgraph mining. They do not consider some substructures because rarely occur
in the exact same form and orientation throughout the image collection. We believe that
with the substructures identified by an approximate algorithm, the images could be better
described and at the same time relevant features could be provided for image classification
(see Section 5.2).

In this paper, a graph-based image representation and a framework for graph-based
image classification are proposed. This framework uses the frequent subgraph as features
obtained by frequent subgraph mining algorithms on an artificial image collection. Using
this framework our proposed algorithm is evaluated through image classification.

The basic outline of this paper is as follows. Section 2 provides some basic concepts; it
also contains an approximate method and the related work. The new approximate method
for frequent approximate subgraph mining is provided in Section 3; this section also intro-
duces the VEAM algorithm. The framework for image classification is introduced in Section
4 as a case study to evaluate the approximate algorithm proposed. The experimental results
in six collections of images generated by a Random images generator are presented in Section
5; in this section we also present the discussion and in addition, we present a computational
performance comparison between VEAM and APGM algorithms. Finally, conclusions of the
research and some ideas about future directions are exposed in Section 6.

2. Background

In order to explain the foundation of our algorithm, we start by providing the background
knowledge and notation used in the following sections; also, the frequent subgraph mining
using a similarity function is defined. Next, the most relevant algorithms of related work
are presented and we give an overview of the approaches closest to ours. Finally, some
definitions of an approximate method used by one of the algorithms analyzed in this paper
are presented, and an example of a reported frequent subgraph mining task proposed is
described.

2.1. Basic concepts

This work is focused on simple undirected labeled graphs. Henceforth, when we refer to
graph we assume this kind. Before presenting their formal definition, we define the domain
of labels.

Let LV and LE be label sets, where LV is a set of vertex labels and LE is a set of edge
labels, the domain of all possible labels is denoted by L = LV ∪ LE .

A labeled graph in L is a 4-tuple, G = (V,E, I, J), where V is a set whose elements are
called vertices, E ⊆ {{u, v} | u, v ∈ V, u 6= v} is a set whose elements are called edges (the
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edge {u, v} connecting the vertex u with the vertex v), I : V → LV is a labeling function
for assigning labels to vertices and J : E → LE is a labeling function for assigning labels to
edges.

Let G1 = (V1, E1, I1, J1) and G2 = (V2, E2, I2, J2) be two graphs, we say that G1 is a
subgraph of G2 if V1 ⊆ V2, E1 ⊆ E2, ∀u ∈ V1, I1(u) = I2(u), and ∀e ∈ E1, J1(e) = J2(e). In
this case, we use the notation G1 ⊆ G2 and we say that G2 is a supergraph of G1.

Given two graphs G1 = (V1, E1, I1, J1) and G2 = (V2, E2, I2, J2), where G1 ⊆ G2, we say
that e = {u, v} ∈ E2 is an extension of G1 if: V2 = V1 ∪ {v} and E1 = E2 \ {e}. This fact
can be denoted by G2 = G1 ⋄ e. We say that e is a backward extension if v ∈ V1, otherwise
we say that it is a forward extension (it extends the vertex set of G1).

In graph mining over collections of labeled graphs, a large number of candidates subgraph
are processed. Most of these candidates have already been considered in a previous step, but
they appear again through several frequent subgraphs during the search. These candidates
are known as duplicate candidates. The duplicates are detected using isomorphism tests.
We say that f is an isomorphism between G1 and G2 if f : V1 → V2 is a bijective function
where:

• ∀u ∈ V1, I1(u) = I2(f(u)), and

• ∀{u, v} ∈ E1, {f(u), f(v)} ∈ E2 ∧ J1({u, v}) = J2({f(u), f(v)}).

When there is an isomorphism between G1 andG2, we say that G1 andG2 are isomorphic.
One way to approach the isomorphism test is using canonical forms (CF) for representing
graphs [3].

Let Ω be the set of all possible labeled graphs in L, the similarity between two elements
G1, G2 ∈ Ω is defined as a function sim : Ω × Ω → R

+, where R
+ ⊂ R is the set of non-

negative real numbers. We say that the elements are very different if sim(G1, G2) = 0 and
the higher the value of sim(G1, G2) the more similar the elements are.

Let D = {G1, . . . , G|D|} be a graph collection and G be a labeled graph in L, the support
value of G in D is obtained through the following equation:

supp(G,D) =
∑

Gi∈D

sim(G,Gi)/|D| (1)

If supp(G,D) ≥ δ, then the graph G occurs approximately frequent in the collection D,
saying that G is a frequent approximate subgraph in D. The value of the support threshold
δ is in (0, 1] assuming that the similarity is normalized to 1. The frequent subgraph mining
consists in finding all the connected frequent approximate subgraphs in a collection of graphs
D, using a similarity function sim and a support threshold δ.

There are several similarity functions used by different algorithms in the graph matching
process [6]. In the Section 2.2, we present the most relevant algorithms in the related work
which use approximate graph matching techniques in frequent subgraph mining. All of these
algorithms use the definitions presented above, implementing a specific similarity function.
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2.2. Related work

There are several algorithms for frequent approximate subgraph mining in graph collec-
tions which use different similarity functions for graph matching. The approximate subgraph
mining can be divided into five kinds according to the matching approach:

1. Based on graph edit distance: the algorithms SUBDUE [14] and RNGV [29] explore
possible edit paths of a graph for keeping the one expected as a candidate. These
algorithms do not claim completeness.

2. Based on β-edge sub-isomorphism: the Monkey algorithm [35, 36] handles only missing
edge and edge label mismatch, where β is the maximum number of edge differences
allowed between subgraphs.

3. Based on node/edge disjoint sub-homeomorphism: the CSMiner algorithm [31, 32]
finds approximate structures that share the same topology.

4. Based on sub-isomorphism on uncertain graphs: the MUSE algorithm [37, 38] com-
putes the expected support of each candidate through a given interval. the graphs
that this algorithm processes are uncertain because they contain a non-occurrence
probability.

5. Based on substitution probabilities: the algorithms gApprox [5] and APGM [17, 18]
specifies which vertices, edges or labels can replace others. Thus, the idea that not
always a vertex label or an edge label can be replaced by any other is defended.

In gApprox algorithm each vertex contains a list of vertices that can replace it with
the same probability; this means that each vertex can only be replaced by those in this
list and by any of them. However, this algorithm performs frequent approximate subgraph
mining on a single graph and we are interested in mining on graph collections. On the
other hand, APGM algorithm uses a substitution matrix (see section 2.3) to perform the
frequent subgraph mining on a graph collection. Although the authors suggested that it can
be extensible to the edge labels, this algorithm only deals with the variations between the
vertex labels.

In this paper, we propose a solution based on the idea of the last group, because we are
looking for an algorithm which allows some variations of the data through the substitution
probability, keeping the topology of the graphs.

2.3. An approximate method

In this section, we present the approximate method of APGM algorithm [17, 18], where
the approximate matching is based on vertex label. This method uses the substitution
matrix that can have a probabilistic interpretation and it offers a framework for this frequent
subgraph mining task.

A substitution matrix M = (mi,j) is an |L| × |L| matrix indexed by a label set L. An
entry mi,j (0 ≤ mi,j ≤ 1,

∑

j mi,j = 1) in M is the probability that the label i is replaced by
the label j.

We say that M is stable if it is diagonal dominant (i.e. Mi,i > Mi,j, ∀j 6= i). Henceforth,
when we refer to substitution matrix we assume this kind of matrix.
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Example 1. In Fig. 2, we show a substitution matrix MV of collection D showed in
Fig. 1, where the vertex label set is LV = {0, 1, 2, 3, 4, 5, 6}, and MV is indexed by LV .
The probability that the vertex label 0 is substituted by 2 is m0,2 = 0.4.

MV

3 4 5 61 2
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4
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6

0

0

1

2

0.6 0 0.4 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0.4 0 0.6 0 0 0 0

0 0 0 0 0 0 1

Figure 2: Substitution matrix MV indexed by LV .

Definition 1 (Vertex approximate sub-isomorphism1). Given two labeled graphs
G1 = (V1, E1, I1, J1), G2 = (V2, E2, I2, J2) in L = LE ∪ LV , a substitution matrix MV
indexed by LV , and the isomorphism threshold τ whose value is in [0, 1], G1 is vertex
approximately sub-isomorphic to G2 if there exists an injection f : V1 → V2 such that:

• Sf (G1, G2) =
∏

u∈V1

MVI1(u),I2(f(u))

MVI1(u),I1(u)
≥ τ ,

• ∀{u, v} ∈ E1, {f(u), f(v)} ∈ E2,

• ∀{u, v} ∈ E1, J1({u, v}) = J2({f(u), f(v)}),

Where Sf (G1, G2) is the product of normalized probabilities called vertex approximate
sub-isomorphism score of f .

Given a pair of graphs there are different ways of mapping vertices from one graph to
another and hence they may be different vertex approximate sub-isomorphism score. The
vertex approximate matching score between two graphs, denoted by S(G1, G2), is the largest
approximate sub-isomorphism score:

S(G1, G2) = maxf{Sf(G1, G2)} (2)

The frequent subgraph mining task proposed by Jia et al. [17, 18] consists in finding all
the connected frequent subgraphs in a collection of graphs D, using the Definition 1 as vertex
approximate sub-isomorphism, δ as support threshold, and τ as isomorphism threshold.

In section 3, we present a proposal based on this method. Our proposal is more com-
plex than the APGM approach, where the approximate matching between edge label set is
included in this frequent subgraph mining task.
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3. Frequent approximate subgraph mining

In this section, we present a new algorithm for frequent approximate subgraph mining.
Before we proceed to the algorithmic details, we introduce the following definitions to fa-
cilitate the demonstration of our approximate method. Also in this section, the differences
between VEAM and APGM through comparative examples and comments will be identified.

Definition 2 (Approximate sub-isomorphism). Let G1 = (V1, E1, I1, J1) and G2 =
(V2, E2, I2, J2) be two labeled graphs in L, MV be a substitution matrix indexed by LV ,
ME be a substitution matrix indexed by LE , and τ be the isomorphism threshold. We
say that G1 is approximate sub-isomorphic to G2, denoted by G1 ⊆A G2, if there exists an
injection h : V1 → V2 such that:

• ∀{u, v} ∈ E1, {h(u), h(v)} ∈ E2,

• Sh(G1, G2) =
∏

u∈V1

MVI1(u),I2(h(u))

MVI1(u),I1(u)
∗
∏

e={u,v}∈E1

MEJ1(e),J2({h(u),h(v)})

MEJ1(e),J1(e)
≥ τ .

The injection h is an approximate sub-isomorphism between G1 and G2, and Sh(G1, G2)
is the product of normalized probabilities called approximate sub-isomorphism score of h.
Notice that the previous definition is an extension of the vertex approximate sub-isomorphism
(see Definition 1), originally presented by Jia et al. [17, 18] for APGM algorithm, since it
allows both, probabilistic vertex label substitution (as in Definition 1) and probabilistic
substitutions on the edge label set.

Analogously, the approximate matching score between two graphs, denoted by
Smax(G1, G2), is the largest approximate sub-isomorphism score:

Smax(G1, G2) = maxh{Sh(G1, G2)} (3)
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Figure 3: Example of three labeled graphs in L and a substitution matrix ME indexed by LE.

Example 2. In Fig. 3, we show three labeled graphs in L and a substitution matrix
ME for the graph collection showed in Fig. 1, where ME is a matrix indexed by LE and
T ⊆A G. We use the substitution matrix MV showed in Fig. 2 and matrix ME for comput-
ing the approximate matching score between T = (VT , ET , IT , JT ), P = (VP , EP , IP , JP ) and
G = (VG, EG, IG, JG). We have P ⊆A G and T = P ⋄ {s1, s2} ⊆A G, where the isomorphism
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threshold τ = 0.15, with the approximate matching score equal to 0.667 and 0.333 respec-
tively. There are several ways for mapping vertices and edges of T to those of G, but only two
of them satisfy the constraints of Definition 2. These ways are h1 : {s0, s1, s2} → {v0, v1, v2}
and h2 : {s0, s1, s2} → {v0, v3, v4} where h1(s0) = v0, h1(s1) = v1, h1(s2) = v2, h2(s0) = v0,
h2(s1) = v3 and h2(s2) = v4. These two ways fulfill the first and second constraints
of Definition 2 and τ is less than its values of approximate sub-isomorphism score (see
Fig. 4). The values of approximate sub-isomorphism of h1 and h2 are Sh1(T,G) = 0.167
and Sh2(T,G) = 0.333 respectively. Thus, the value of approximate matching score is
Smax(T,G) = 0.333, because it is the highest value of Sh1(T,G) and Sh2(T,G).
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Figure 4: Example of two ways to map vertices and edges of the labeled graph T to those of

the labeled graph G.

It is important to notice that the subgraph T is one of the patterns identified by our
proposal, which is not identified by APGM. In fact, we use the Definition 2 in VEAM,
while APGM uses the Definition 1. As it can be seen, the subgraph T does not satisfy the
4th constraint of Definition 1, where the same edge labels are required. Such constraint is
missing in Definition 2 allowing us the identification of T through of an extension of P . This
is where the label of the new edge {s1, s2}, which is identified as possible extension of P , do
not exactly match with any edge labels of G (see Fig. 3).

Definition 3 (Embedding and embedding set). Let G1 = (V1, E1, I1, J1), G2 =
(V2, E2, I2, J2), T = (VT , ET , IT , JT ) be three labeled graphs in L, where T ⊆ G2. Using
an isomorphism threshold τ , we say that T is an embedding of G1 in G2 if G1 ⊆A T ,
|V1| = |VT | and |E1| = |ET |. Thus, the embedding set of G1 in G2 is denoted by O(G1, G2).

Example 3. In Fig. 5, we show a pattern P and one of its embeddings S =
({v0, v3}, {{v0, v3}}, I, J), S ⊂ G3, where τ = 0.3. The approximate matching score of
the embedding is computed using the matrices MV showed in Fig. 2 and ME showed in

Fig. 3, and its value is Smax(P, S) =
MV(0,2)

MV(0,0)
∗

ME(4,5)

ME(4,4)
∗

MV(1,1)

MV(1,1)
=

MV(0,2)

MV(0,0)
∗

ME(4,5)

ME(4,4)
= 0.333. The

embedding S is stored in O(P,G3) if τ ≤ 0.3. APGM does not identify S as an embedding
of P in G3 because it uses the Definition 1 and the edge label does not satisfy the constraints
of this definition.

Definition 4 (Extension set). Let T an embedding ofG1 inG2 = (V2, E2, I2, J2), using an
isomorphism threshold τ . Thus, the extension set of T is denoted by ExtSet(T ) = {e ∈ E2 |e
is an extension of T}.
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Figure 5: Example of an embedding S of P in G3 with an isomorphism threshold τ = 0.3.

The frequent subgraph mining task proposed in this paper consists in finding all the con-
nected frequent subgraphs in a collection of graphs D, using the Definition 2 as approximate
sub-isomorphism, δ as support threshold, and τ as isomorphism threshold.

3.1. Algorithm design

In this section, we propose a new algorithm for frequent approximate subgraphs mining
called VEAM (Vertex and EdgeApproximate graphMiner). This algorithm incorporates in
the approximate graph matching all labels that appear in the substitution matrices. Notice
that if there are labels that do not appear in any graph of the collection and appear in the
matrices, then these labels will be used in the mining process, and frequent approximate
subgraphs with those labels can be obtained.

VEAM computes the frequency of the vertices, and starts mining from the frequent ones.
At a subsequent step, it adds an edge to an existing pattern, in all possible ways, to create
new candidate subgraphs and identify their support value. In this algorithm depth-first
search (DFS) is used to find candidates by extending each current subgraphs pattern using
a new edge. VEAM stops when no more patterns can be extended.

VEAM is shown through three pseudo-codes where the main algorithm consists in finding
all frequent vertices, then these vertices are stored in sets F and C (see Algorithm 1). Later,
for each T ∈ C the algorithm V EAMSearch is invoked. When all frequent vertices in C
have been extended, then the set F of all frequent approximate subgraphs in D is returned.

Algorithm 1: V EAM

Input: D : A graph collection, MV : Substitution matrix indexed by LV , ME :
Substitution matrix indexed by LE , τ : Isomorphism threshold, δ : Support
threshold.

Output: F : Frequent approximate subgraph set.

F ← C ← {the single vertices labeled in LV , which are frequent approximate1

subgraphs in D};
foreach T ∈ C do2

VEAMSearch(T,D,MV,ME, τ, δ, F);3
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Algorithm 2 shows the pseudo-code that performs the extension of subgraph patterns on
one edge. Thus, all candidate subgraphs are created using the label set obtained through
the algorithm invoked in line 4. These candidates are created in two different forms: one is
to add a backward extension to the subgraph pattern T (see line 7), and the other is to add
a forward extension to T (see line 9). In order to make this pseudo-code behave like APGM
is enough to replace appLSet call with APGMappLSet at line 4.

The set of frequent approximate subgraphs F is stored as a hash function to obtain
efficiently the processed subgraphs. The hash key of the function is a canonical code of
the subgraph pattern, which is a unique string representation of a graph. We use CAM and
CAM code to compute the canonical code of a graph as in [12, 16]. Notice that a single graph
G with |V | vertices have |V |! different adjacency matrices, since there are |V |! possibilities
to order the vertices of G. To obtain canonical code of G the CF tests are demanded (see
line 10). These tests have very high computational complexity [3] as is mentioned above.

Algorithm 2: V EAMSearch

Input: T = (Vt, Et, It, Jt) : A frequent approximate subgraph, D : Graph collection,
MV : Substitution matrix indexed by LV , ME : Substitution matrix indexed
by LE , τ : Isomorphism threshold, δ : Support threshold.

Output: F : Frequent approximate subgraph set.

foreach Gi = (Vi, Ei, Ii, Ji) ∈ D do1

foreach oj ∈ O(T,Gi) do2

foreach e = {u, v} and e ∈ ExtSet(oj) do3

CL← appLSet(T,MV,ME,Gi, oj, e, τ);4

foreach (elabel, vlabel) ∈ CL do5

if e is a backward extension of T then6

X = (Vt, Et ∪ {e}, It, Jt ∪ {(e, elabel)});7

else8

X = (Vt ∪ {v}, Et ∪ {e}, It ∪ {(v, vlabel)}, Jt ∪ {(e, elabel)});9

The code CAM of X is compute and store in codeCAM(X);10

C ← C ∪ {(X, codeCAM(X), score)};11

foreach T1 ∈ C do12

if supp(T1, D) ≥ δ and codeCAM(T1) /∈ F then13

Insert T1 in F ;14

VEAMSearch(T1, D,MV,ME, τ, δ, F);15

Algorithm 3 seeks the possible approximate label set for the new edge e which is a
backward extension of subgraph pattern T (see lines 1, 2 and 7), or seeks for each possible
label of forward edge e, the possible label set of the new vertex that e connects with the
existing vertex in T (see lines 1− 6).
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Algorithm 3: appLSet

Input: T : A candidate graph, MV : Substitution matrix indexed by LV , ME :
Substitution matrix indexed by LE , G = (V,E, I, J) : A graph of the
collection, G′ : Embedding of T in G, e = {u, v} : An extension of G′, τ :
Isomorphism threshold.

Output: CL : A set of candidate 2-tuple (elabel, vlabel).

foreach j ∈ LE do1

scoreE ← Smax(T,G
′) ∗

MEj,J(e)

MEj,j
;2

if e is a forward extension of G′ then3

foreach i ∈ LV do4

score← scoreE ∗
MV i,I(v)

MV i,i
;5

if score ≥ τ then CL← CL ∪ {(j, i)};6

else if scoreE ≥ τ then CL← CL ∪ {(j, ∅)};7

Algorithm 4: APGMappLSet

Input: T : A candidate graph, MV : Substitution matrix indexed by LV ,
G = (V,E, I, J) : A graph of the collection, G′ : Embedding of T in G,
e = {u, v} : An extension of G′, τ : Isomorphism threshold.

Output: CL : A set of candidate 2-tuple (elabel, vlabel).

luv = J({u, v});1

if e is a forward extension of G′ then2

foreach i ∈ LV do3

score← Smax(T,G
′) ∗

MV i,I(v)

MV i,i
;4

if score ≥ τ then CL← CL ∪ {(luv, i)};5

else CL← CL ∪ {(luv, ∅)};6

Algorithm 4 is presented in addition to show the differences between APGM and VEAM
by making the least possible changes to adapt the VEAM algorithm. APGMappLSet
obtains the possible approximate label set for the new vertex that the forward extension
e connects with the existing vertex in T and always keeps the edge label of e in G. This
pseudo-code is less expensive than Algorithm 3, because the computational cost of Algorithm
3 is O(|LE| ∗ |LV |) and Algorithm 4 is O(|LV |).

4. Scheme for image classification

In this section we start by introducing the graph-based image representation for frequent
subgraph mining implementation. After that, we present a framework used to show the
utility of our approximate method in image classification tasks. Details of image classification
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are introduced with the proposed framework.

4.1. Graph-based image representation

Several techniques have been developed to represent images in graph forms [10, 25, 26].
This kind of representation has been a great help for image processing since graphs can
describe the structural and topological information of images. The main idea of graph-based
image representation is that the regions of the image, which contain similar properties, are
denoted by graph vertices, and the relations between different regions are denoted by graph
edges. The vertex and edge attributes usually describe the characteristics of that region
and the relation between regions respectively. A simple approach to keep the structural and
topological information of an image is to use digital image representation techniques; for
instance, quad-trees [10], etc. By modeling images as graphs, the task of image classification
becomes one of classifying graphs.

Quad-trees [10] have been used for representing images in the form of trees. A quad-tree
consists in splitting an image in four equal-sized quadrants. Each of these quadrants can be
further split into four sub-quadrants (NW, NE, SW and SE), and so on. The global process
of the quad-tree consists in dividing the sub-images recursively until the imposed limit for
the number of divisions is met. An example of quad-tree with 4 as depth limit of divisions
over an image is showed in Fig. 6. When the depth limit of divisions is achieved and any
sub-quadrant contains several properties to obtain, then the predominant property in this
sub-quadrant is taken as attribute of a tree node. The property taken as an attribute of the
nodes in the example of Fig. 6 is the color.

Figure 6: Example image with the quadrants of quad-tree identified.

After obtaining the quad-tree of an image, we generate a graph to represent the image
with the goal of maintaining the structural information such as the relations between objects.
So, the graph (image) mining can be performed to discover implicit patterns among graph
collection. The process of graph generation proposed consists in three steps:

1. The vertices of the graph are made with the quad-tree leaves (sub-quadrants) with its
attributes. The attributes of the leaf nodes of the quad-tree is the midpoint of the
quadrant and the predominant attributes of the image is their labels (i.e. texture,
color, etc.).
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2. Iteratively for each level from top to bottom of the quad-tree:

a) If the quadrant is a NW (NE) leaf, then it is joined by an edge to each of the most
west (east) leaf in the NE (NW) sibling non-leaf quadrant, or by an edge to the
NE (NW) sibling leaf in case it is so; doing the same with a SW (SE) leaf relative
to the leaves of the SE (SW) sibling quadrant.

b) If the quadrant is a NW (SW) leaf, then it is joined by an edge to each of the most
north (south) leaf in the SW (NW) sibling non-leaf quadrant, or by an edge to the
SW (NW) sibling leaf in case it is so; doing the same with a NE (SE) leaf relative
to the leaves of the SE (NE) sibling quadrant.

The most west leaves of a non-leaf quadrant at certain level are the leaves labeled
as NW and SW in the following down level, or those leaves labeled as NW and SW
but being recursively children of NW and SW sub-quadrants. The same condition is
applied to the most east leaves with labels NE and SE, the most north leaves with
labels NW and NE, and the most south leaves with labels SW and SE.
Example 4. Let a quadrant divisions showed in Fig. 7 be the quad-tree of an im-
age. We say that the vertex denoted by the number eight and each vertex of the set
{5, 7, 9, 13, 14, 17} are connected by an edge.

1

8

16 17
13

1 2

4 5

9 10
11

14 15

18 19

3 1

13

6 7

12 13

Figure 7: Example of quadrant divisions of an image.

3. The label of each edge e, denoted by label(e), is an index obtained through the following
function over the angle α between this edge and the horizontal line. This function
depends on a value of the number of classes n that categorize the possible angles. The
possible angles cover 180o supposing that these edges are undirected.

label(e) =







⌊α∗n
π
⌋ if 0 ≤ α < π

0 if α = π
(4)

In this paper, the Random image generator2 of Coenen is used to obtain the collection of
images. Later, we use the quad-tree to represent each image in a tree form. Then, a graph
to represent each image in the collection is constructed from each respective tree. In Fig. 8,
we show the graph generated from the quad-tree of Fig. 6 using n = 6.

2http://www.csc.liv.ac.uk/∼frans/KDD/Software/ImageGenerator/imageGenerator.html
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Figure 8: Graph generated from the quad-tree shown in Figure 6 using n = 6.

The matrices are built using the semantic of the data from images. The vertex labels of
graphs indicate the predominant attributes (colors in our examples) of sub-quadrants from
each represented image.

The collection that we used in our experiments contains 18 colors, which make up the
set LV . Only to illustrate the correspondences between the index number and the color we
describe the colors as a 2-tuple (index, color) as follows: (0, white), (1, sea blue), (2, light
yelow), (3, jungle green), (4, dark green), (5, dark brown), (6, brown), (7, light green), (8,
light gray), (9, green), (10, light brown), (11, lilac), (12, gray), (13, light blue), (14, red),
(15, orange), (16, black), (17, yellow).

With the previous colors, we create the substitution matrix MV used in our experimen-
tations. In any row of this matrix, a color c has a 0.5 probability of being replaced by itself;
the remaining 0.5 is equally distributed among the colors which describe the same group of
objects as described by c. If a group of objects or an object are described by only one color,
then this color can only be replaced by himself with a probability of 1.0. We distribute the
substitution probabilities in MV according to the following groups of colors: {0, 8, 13} are
used to describe the sky; {1} for the sea; {2, 17} for the cabins and boat sails; {3, 4, 9, 10}
for the treetops; {7} for the land; {12} for the houses; {14} for the boats; {15} for the roofs;
{16} for the ships, house doors and windows. The label 5 can be substituted by 6 with
a probability of 0.5 because are used for the tree trunks. The label 6 can be substituted
by {10, 11}, because are used for the tree trunks and mountains. The label 11 can be
substituted by {6, 10} because are used for the mountains.

We create the substitution matrix ME used in our experimentations which allows some
position variations of the objects in the images. These allowed variations of the angles
formed by the edges and the horizontal lines is π

n
. In the collection used as example in this

paper we use several values of n. With the goal to allow slight position variations mentioned
we define that the label 1 can be substituted by 0 or 2 with a probability of 0.5 and the
same occurs for the rest of labels. So, the matrix ME showed in Fig. 3 is the matrix that
we used to obtain our results.
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4.2. Proposed framework

Given a set of pre-labeled images generated by the Random image generator, we obtain
the quad-trees of these images; with these quad-trees the graph collection that represents
these images are generated. After that, the algorithms for frequent subgraph mining are
implemented with the goal of obtaining all frequent subgraphs over a graph collection.
Later, these subgraphs are used as features and the feature vectors of the original images
are made. Finally, we employ a classifier generator using these vectors as data to produce
an image classifier. The complete flowchart of our experiment procedure is shown in Fig. 9.

Random image generator

Frequent subgraphs
mining algorithm

SVM (10 cross validation) Image Classifier

Quad-tree
representation

Feature vectors

1 0 0 1 0 ... 1

0 1 1 0 0 .

0 0 0 1 1 ... 0

1 1 1 1 0 ... 1

.

.

.

.

.

.

.

.

.

1 0.5 0.2 ... 1

0 0.6 0.5 .

0.8 0 0.7 ... 1

1 1 0.9  ...   0

.

.

.

.

.

.
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.

.

1 0.5 0.2 ... 1

0.8 0.6 1 .

0.8 0 0.7 ... 0

1 1 0.9  ...   0

.

.

.

.

.

.

.

.

.

Graph
representation

Graph collection
Frequent subgraphs

Figure 9: Framework of graph-based image classification.

This framework is similar to that proposed by Jiang and Coenen [19]. The phases
represented by dashed lines in Fig. 9 are identical to the phases proposed by Coenen. We
modified the three phases represented by solid lines showed in the same figure: (1) the graph
representation used to obtain the graph collection (see section 4.1), (2) frequent subgraph
mining algorithm (see section 3) and (3) feature vector built (see section 4.3).

4.3. Image classification

In order to evaluate the quality of the patterns identified we use the frequent subgraphs
detected on classification tests. For that, the package libSVM3 is used for image classification
through Support Vector Machine (SVM) classifier. Given these frequent subgraphs, we build
feature vectors upon them, then an image is represented as a feature vector V = (v1, . . . , vx),
where x is the total number of subgraphs identified. Thus, we build a matrix where the row
number (1 ≤ i ≤ |D|) corresponds to the number of graph (images) in the collection, and the
number of columns (1 ≤ j ≤ x) corresponds to the number of frequent subgraphs (features).
Each feature value can be assigned using the binary setting or similarity setting.

3http://www.csie.ntu.edu.tw/∼cjlin/libsvm
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In the binary setting, an entry of the matrix vi,j is vi,j = 1 if the feature j occurs in the
image i of the collection and otherwise vi,j = 0. An entry of matrix vi,j in the similarity
setting is the highest similarityvalue of the occurrences of feature j in the image i of the
collection and vi,j = 0 in cases where feature j does not occur in image i. The similarity
value of each feature is obtained through (1) using the similarity function that corresponds
to each particular algorithm. In the APGM case, the matrix MV described in section 4.1
is used. In our case, we use the matrix ME described in the same section 4.1 and the same
matrix MV used by APGM.

5. Experimental results

In this section, we show the experimental results that validate the efficacy of the proposed
algorithm of frequent approximate subgraph mining for image classification. The results of
classification using VEAM, gSpan [33] and APGM4 algorithms are compared. These two last
ones are chosen as the representation of the algorithms for frequent subgraph mining using
exact matching (gSpan), and for the comparison between algorithms that use approximate
matching (APGM). For the experiments we use a collection of 700 images obtained through
a random image generator, and each image is represented as a labeled graph.

All our experiments were carried out using a personal computer (64 bits) Intel (R) Core
(TM)2 Duo CPU E7300 @ 2.66 GHz with 2 Gb main memory. The algorithm VEAM for
frequent approximate subgraph mining was implemented in ANSI C language and compiled
using gcc compiler of GNU/Linux with -O0 optimization.

5.1. Graph collection

The collection consists of 700 images obtained by the Random image generator. These
images are classified as either “landscape” or “seascape” according to content as shown in
Fig. 10. Each of these images is represented as quad-tree with 4 as depth limit of divisions.
From these trees the graphs that represent each image of the collection were built using
several values of n. The process of building the graphs is explained in detail on Section 4.1.

The collection was divided into six sub-collections with different sizes to be used in our
experiments. These sub-collections are described in table 1 where the first column is the
given name of the sub-collection, PD is the number of graphs in the collection, PT is the
average size of graphs (in terms of the number of edges), PV is the number of vertex labels,
and PE is the number of edge labels.

5.2. Frequent approximate subgraphs identified

The frequent approximate subgraphs are identified according to the definition of two
arguments which are made pruning the search space in the mining process. The first ar-
gument is the support threshold (0 < δ ≤ 1) and the second is the isomorphism threshold

4The APGM algorithm used in our experimentation is implemented by us to detect all frequent vertex
approximate subgraphs and not just the clique subgraphs as proposed by its authors [17, 18].
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Figure 10: Sample images by Random image generator.

Table 1: Graph collections used in the experiments, where n = 24.

Data PD PV PT PE

D1 200 18 45 24
D2 300 18 43 24
D3 400 18 45 24
D4 500 18 46 24
D5 600 18 47 24
D6 700 18 47 24

(0 < τ ≤ 1). The identified frequent approximate subgraphs are shown in table 2. Notice
that the value of τ is set to 0.4 in APGM and VEAM algorithms.

Table 2: Number of patterns identified by gSpan, APGM(τ = 0.4) and VEAM(τ = 0.4) on several graph
collections, which were built using n = 24.

Data Algorithm Support (δ)
20% 25% 30% 35% 40% 45% 50% 55% 60%

gSpan 711 243 72 26 11 8 8 7 6
D6 APGM 746 266 81 30 14 11 11 10 9

VEAM 864 321 116 44 23 13 12 11 10
gSpan 347 150 55 19 9 8 8 7 6

D5 APGM 385 172 64 23 12 11 11 10 9
VEAM 498 257 99 35 20 13 12 11 10
gSpan 287 145 54 21 9 8 8 6 6

D4 APGM 321 168 63 24 12 11 11 9 9
VEAM 453 238 93 35 19 13 12 11 10
gSpan 286 99 38 19 8 8 8 6 5

D3 APGM 325 121 47 23 11 11 11 9 8
VEAM 433 203 79 31 18 13 12 11 9
gSpan 227 77 32 17 8 8 6 6 3

D2 APGM 258 99 42 24 11 11 9 9 6
VEAM 374 154 69 31 17 13 11 10 7
gSpan 197 60 30 20 9 8 6 6 3

D1 APGM 227 82 41 26 12 11 9 9 6
VEAM 340 143 72 35 18 13 11 10 6

The isomorphism threshold (τ) was selected according to the substitution matrices used
in the experimentation (described in section 4.1). Given the features of the matrix used in
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the approximate matching between edge labels (see Figure 3), it is necessary that τ must
be less than or equal to 0.5 in order to get an approximation between these labels. About
the matrix indexed by the vertex labels, it is necessary that τ must be less than or equal to
0.66. For these reasons, we choose τ as 0.4 to satisfy the above considerations.

The matrices used in APGM and VEAM on frequent subgraphs detection are built using
the semantic of the data from images as described in section 4.1. In order to illustrate how
different is our approximate algorithm (in terms of the number of identified patterns), Fig. 11
shows the subgraphs identified by VEAM algorithm over the collection of Fig. 1 using the
matrices of figures 2 and 3 with δ = 0.5 and τ = 0.4. In case of using an exact algorithm over
the same collection only subgraphs which are inside the box in Fig. 11 had been identified.
On the other hand, if we use the APGM algorithm the subgraphs represented by dashed
lines are identified.
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Figure 11: A set of frequent subgraphs extracted by VEAM algorithm over the collection shown

in figure 1, where δ = 0.5 and τ = 0.4.

Our proposed algorithm provides more patterns than any exact algorithm and APGM
algorithm because some concepts or reasonably similar images are grouped. The fact that the
patterns identifies by VEAM provide more information is because our algorithm identifies
interesting patterns with comprehensible or acceptable semantic variations in the edges
and vertices which gSpan cannot detect. The slight variations about the rotation of the
edges allow us to detect patterns which APGM cannot identify. These variations are very
common in processing image collections, because the colors may not be exactly the same
and the objects may appear with some difference of position on several images that illustrate
the same context.

5.3. Computational performance

As we explained in section 3 and it was argued in section 5.2, our proposed algorithm
extends more candidate subgraphs than APGM. The number of CF tests performed by an
algorithm is directly proportional to the candidate subgraphs processed.

In order to compare the performance of VEAM and APGM algorithms we included the
following tables. In table 3 we specify the quantities of CF tests performed by each algorithm
on several graph collections built with n = 24 (see section 4.1). We can observe that VEAM
requires twice (and more) the amount of test APGM should do in most of the cases. These
tests become much more complex to great extent with the increase of the candidate size.
The values showed in this table are due to the extensive search space of VEAM to include
edge variations into the graph matching process.
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Table 3: Number of CF test performed by APGM and VEAM with τ = 0.4 on several graph collections,
which were built using n = 24.

Data Algorithm Support (δ)
20% 25% 30% 35% 40% 45% 50% 55% 60%

D6 APGM 245986 79972 20993 6981 3084 2413 2413 2077 1782
VEAM 605103 208285 64894 23089 11585 6367 5779 4999 3795

D5 APGM 98916 41886 14900 5034 2544 2336 2336 2030 1738
VEAM 287765 147907 51706 17761 9977 6195 5631 4881 3704

D4 APGM 76711 39654 13994 5036 2466 2260 2260 1685 1685
VEAM 240419 127856 45049 16700 9184 5946 5403 4693 3564

D3 APGM 70379 24733 9038 4508 2147 2147 2147 1602 1320
VEAM 205322 96673 34190 13915 8337 5663 5145 4461 3376

D2 APGM 50075 18072 7469 4287 2075 2075 1561 1561 923
VEAM 157470 62541 27491 12527 7345 5459 4338 3765 1902

D1 APGM 37618 12964 6710 4378 2087 1905 1457 1457 875
VEAM 115926 49648 24915 12661 7165 5032 4030 3507 1793

In this paper, we do not present comparisons of runtimes because the patterns which
process the algorithms are very different (see Table 2). There is a great difference between
the number of CF tests performed by APGM and VEAM algorithms (see Table 3).

5.4. Classification results

In order to evaluate our approximate algorithm the SVM is used with two kernels: Linear
and Radial Basis Function (RBF). As described in Section 4.3, the classification is performed
on feature vectors, where their values are obtained using the binary setting or similarity
settings. The binary setting is used for gSpan results, while the similarity setting is used for
APGM and VEAM results.

The classification results are summarized in table 4. Subtable (a) of this table illustrates
the results obtained using the RBF kernel and subtable (b) illustrates the results using the
linear kernel. The first column of these subtables indicates the collection used, the next
column shows the support threshold used in the frequent subgraphs mining task and the
last three columns correspond to the accuracies achieved with kernels taken in the SVM
classification algorithm. The classification accuracy is tested on 10 cross-validation.

The results of Table 4 are due to the patterns identified by the algorithms providing useful
information for classification. Moreover, in order that the APGM and VEAM algorithms
identify these patterns, we consider that δ must be greater than or equal to 20% and less
than or equal to 60%. On the other hand, these results (see Table 4) show that the patterns
obtained by VEAM are better than those found by APGM and gSpan in image classification
tasks. Thus, VEAM obtains the best accuracies in most of the cases.

5.5. Discussion

The use of approximate algorithms is necessary when enough features for a good classi-
fication cannot be identified by exact methods. This is shown through the results presented
in Section 5.4 where δ = 55% and δ = 50%. However, APGM and VEAM algorithms report
in a few of the cases the same number of subgraphs with largest size when δ = 55% and

19



Table 4: Accuracies achieved using SVM on different sets of graphs (images), which were built using n = 24.

(a) Using RBF kernel

Data δ gSpan APGM VEAM
60% 78.7143% 78.7143% 78.7143%
55% 78.5714% 78.5714% 84.1429%
50% 78.5714% 78.5714% 83.5714%
45% 78.5714% 78.5714% 83.8571%

D6 40% 83.7143% 83.7143% 94.5714%
35% 91.7143% 91.7143% 95.4286%
30% 92.7143% 93% 95.5714%
25% 90.5714% 90.2857% 95.5714%
20% 90.7143% 90.2857% 95.2857%
60% 77.6667% 77.6667% 78.3333%
55% 77% 77.6667% 85.6667%
50% 77.1667% 77.3333% 85.5%
45% 77.1667% 77.3333% 85.5%

D5 40% 84.6667% 84.6667% 93.5%
35% 92.5% 92% 93.5%
30% 92.8333% 92.8333% 95.3333%
25% 90.3333% 90% 95%
20% 90.6667% 90.5% 95.6667%
60% 79.2% 79.4% 79.8%
55% 79.2% 79.4% 83.4%
50% 79.2% 79.8% 81.8%
45% 79.2% 79.8% 83.8%

D4 40% 85% 85% 93%
35% 92.4% 92.4% 93.6%
30% 93% 92.2% 95.4%
25% 91.2% 91.2% 95.4%
20% 90.4% 90% 94.8%
60% 81.75% 82% 82.25%
55% 81.75% 81.75% 82.5%
50% 81.75% 81.75% 82%
45% 81.75% 81.75% 82.5%

D3 40% 81.75% 81.75% 95%
35% 92.5% 92.5% 93%
30% 92% 91.25% 96.75%
25% 90.75% 90.75% 94.75%
20% 91.25% 90.75% 93.25%
60% 82.6667% 82.6667% 82.6667%
55% 79.6667% 81.3333% 91.3333%
50% 79.6667% 81.3333% 88.3333%
45% 80% 80.3333% 87%

D2 40% 80% 80.3333% 94.3333%
35% 92% 92.3333% 94%
30% 92% 91% 94.3333%
25% 91% 91% 95.3333%
20% 92% 92.6667% 92.6667%
60% 81.5% 81.5% 81.5%
55% 80.5% 81.5% 85%
50% 80.5% 81.5% 83.5%
45% 78% 78% 82%

D1 40% 87.5% 88.5% 92%
35% 92% 92% 92%
30% 92.5% 92% 92.5%
25% 91.5% 91% 93.5%
20% 93% 92% 92.5%

(b) Using Linear kernel

Data δ gSpan APGM VEAM
60% 78.1429% 78.1429% 78.7143%
55% 79.4286% 79.4286% 83.5714%
50% 79% 79.4286% 83.4286%
45% 79% 79.4286% 83.5714%

D6 40% 83.5714% 83.5714% 95.4286%
35% 91.7143% 92% 95.7143%
30% 92% 92% 95.5714%
25% 92.4286% 93% 95.5714%
20% 95.2857% 93.7143% 95.8571%
60% 76.6667% 76.8333% 77.6667%
55% 76% 76.5% 85.6667%
50% 76.5% 76.5% 85.6667%
45% 76.5% 76.5% 85.6667%

D5 40% 84.5% 84.5% 95.3333%
35% 92.1667% 92.5% 94.5%
30% 90.8333% 91.3333% 95.6667%
25% 92.6667% 93.1667% 95.3333%
20% 94.8333% 93% 95.8333%
60% 76% 75.6% 77%
55% 76% 75.6% 85.6%
50% 75.8% 75.8% 85.6%
45% 75.8% 75.8% 85.6%

D4 40% 84.6% 84.6% 95.6%
35% 93% 93% 96%
30% 92.2% 92.6% 97%
25% 92.8% 94% 97.2%
20% 94.2% 95.2% 96.6%
60% 81.75% 82% 84.25%
55% 81.75% 83.75% 87.75%
50% 81.5% 83.75% 87.75%
45% 81.5% 83.75% 87.25%

D3 40% 81.5% 83.75% 95%
35% 93% 93% 96%
30% 92.75% 92.75% 97%
25% 92.75% 93.75% 97.75%
20% 94.25% 93.25% 96.75%
60% 82% 82% 82.3333%
55% 80.3333% 87% 90.6667%
50% 80.3333% 87% 91%
45% 80% 87% 91%

D2 40% 80% 87% 95%
35% 93% 92% 95.6667%
30% 91.6667% 91.6667% 94.3333%
25% 92.3333% 92.6667% 96.3333%
20% 94.3333% 94.3333% 97.3333%
60% 82.5% 82.5% 82.5%
55% 81.5% 82.5% 87%
50% 81.5% 82.5% 87%
45% 81.5% 82.5% 86%

D1 40% 87.5% 87% 92.5%
35% 92% 92.5% 95.5%
30% 93.5% 92.5% 95.5%
25% 91.5% 95% 96%
20% 93% 92% 97.5%
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δ = 50%. Besides that, Table 2 shows that VEAM generally detects more subgraphs than
gSpan and APGM.

Table 5: Number of frequent subgraphs identified by gSpan, APGM (τ = 0.4) and VEAM (τ = 0.4) on
several graph collections, which were built using n = 24.

δ = 55% δ = 50%
Size of subgraphs Size of subgraphs

Data Algorithm (number of edges) (number of edges)
0 1 2 3 0 1 2 3

gSpan 2 2 2 1 2 2 2 2
D6 APGM 5 2 2 1 5 2 2 2

VEAM 5 3 2 1 5 3 2 2
gSpan 2 2 2 1 2 2 2 2

D5 APGM 5 2 2 1 5 2 2 2
VEAM 5 3 2 1 5 3 2 2
gSpan 2 2 1 1 2 2 2 2

D4 APGM 5 2 1 1 5 2 2 2
VEAM 5 3 2 1 5 3 2 2
gSpan 2 2 1 1 2 2 2 2

D3 APGM 5 2 1 1 5 2 2 2
VEAM 5 3 2 1 5 3 2 2
gSpan 2 2 1 1 2 2 1 1

D2 APGM 5 2 1 1 5 2 1 1
VEAM 5 3 1 1 5 3 2 1
gSpan 2 2 1 1 2 2 1 1

D1 APGM 5 2 1 1 5 2 1 1
VEAM 5 3 1 1 5 3 2 1

As mentioned in Section 5.2, it is common that objects in image representing the same
context varies in position. That is why VEAM allows slight angular differences between the
positions of image segments. This makes that the patterns identified describe permissible
variations in images for those collections. Table 5 shows the number of subgraphs reported
for each size where δ = 55% and δ = 50% on a graph collections which were built using
n = 24. As it can be seen in more than 50% of the cases, VEAM detects more frequent
subgraphs than gSpan and APGM for each number of edges. We consider that more frequent
subgraphs semantically related to the model can provide information necessary to a better
characterization of it, specially when there are very few graphs or none obtained by other
models. So, VEAM algorithm achieves better accuracies for these frequency thresholds in
particular, and in general.

On the other hand, a high number of edge labels were used. This allowed us to show the
effectiveness of our approximate approach when there is a high diversity of edge labels in a
graph collection. In this paper, the function label(e) is used to obtain the edge label of any
edge e in the graphs of a collection (see Section 4.1). The edge labels of the graph collection
are clustered according to n because the function label(e) depend on that parameter. For
this reason, with the increasing of n, the number of edge labels increases and the range
of angular differences between the positions of image segments allowed in the matching
process of all algorithms decreases. This range can be reduced to zero if n = 180, then there
are as many edge labels in the collection as angles between the edges and the horizontal
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line. VEAM, even if n = 180, allows a slight angular differences between the positions of
segments in images. These differences are specified by the substitution matrix indexed by
LE and they allow VEAM to keep a stable behavior unlike APGM and gSpan algorithms.
To show the effect of increasing n on the images, we use a series of results obtained using n
in the interval [12, 30]. As an example, we use the first collection (D6) as the data set where
the RBF kernel and δ = 20%. The figure 12 show that the VEAM algorithm obtains results
with the increasing of the number of edge labels.
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Figure 12: Example of accuracies/n obtained by gSpan, APGM and VEAM on several graph

collections.

The overall results show that with the use of approximate algorithms we can achieve
better results than with exact ones for image classification. Also, the results show that our
approach achieves a better classification using RBF kernel function for the data types used
in the experiments.

6. Conclusions and future work

In this paper, we propose a new algorithm called VEAM for frequent approximate sub-
graphs mining on graph collection where the graphs are labeled and undirected. VEAM uses
a new approximate method considering approximation in vertex and edge label set. This
approach identifies the frequent patterns in collections of images allowing slight angular
differences between the positions of image segments. We also present a graph-based image
representation using the information provided by quad-tree technique.

The experimental results show the efficacy of our approximate algorithm versus exact
algorithms and APGM algorithm on image classification. The patterns detected by VEAM
allow semantic variations which are not considered on exact approaches. Moreover, our
proposal also allows some object position variations which cannot be treated by APGM;
since APGM only considers semantic variations on vertex labels. Semantic variations on
edges can be used for modeling many real datasets. As an example of the application of our
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approach, we propose in this paper a solution for image collections. Therefore, the accuracy
results of classification obtained through the exact algorithms and APGM algorithm are
smaller than the obtained by VEAM in almost all cases. Thus, we conclude that the patterns
identified by our proposal are more representative, in accordance with these results, than
those detected by APGM and gSpan. Finally, we show the usefulness of using frequent
approximate patterns to improve image classification.

As future work, we will propose a new interest measures to reduce the number of patterns
identified which keep or increase the classification accuracy. We will develop novel prune
strategies to obtain algorithms more efficient for larger collections.
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[8] A. Elsayed, F. Coenen, C. Jiang, M. Garćıa-Fiñana, V. Sluming. Region of interest based image
categorization. in: Proceedings of the 12th international conference on Data warehousing and knowledge
discovery, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 239–250.
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