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Abstract

Geometric graph mining has bees identified as a need in many applications. This tech-
nique detect patterns with some tolerance under a geometric transformation. To meet this
need, some graph miners have been developed for detecting frequent geometric subgraphs.
However, there are few works for applying this kind of geometric patterns as feature for
classification tasks. In this paper, a new geometric graph miner and a framework for using
frequent geometric subgraphs in classification, are proposed. Our solution was tested in
two real collections. The experimentation on these collections shows that our proposal gets
better results than graph-based image classification using non-geometric graph miners.

Keywords: Mining methods and algorithms, classification, clustering, frequent subgraph
mining

1. Introduction

In recent years, several authors have developed techniques and tools for facing tasks
related with converting large volumes of data into useful information [19]. Frequent pattern
discovery is an example of such techniques [37], when the objects of these datasets are
represented as graphs [25]. These techniques has been successfully employed for classification
tasks [1, 12, 20], using frequent subgraphs as features for representing objects. As example
of this, in literature we can find classification of images [1, 8, 29, 30, 20], texts [21] and
chemical compounds [6, 18].

In the graph collections used in these applications, geometric features of vertices can be
considered for modelling the objects. For example, atom coordinates are included in some
molecular datasets [24], the spatial coordinates of regions of interest are considered in image
collections [1], among others [32]. These datasets are commonly affected by some geometric
shaped distortions of similar structures in several objects. Therefore, the application of a
mechanism for dealing with such distortions can help to improve classification results in
geometric graph databases.
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Distortions in data is one of the challenges for developing classifiers based on frequent
subgraphs [1, 6, 13, 18]. Thus, Deshpande et al. [6] proposed a classification that use
frequent geometric subgraphs as features for representing objects. Moreover, some tools for
geometric graph mining are reported in the literature [24, 28].

Geometric graph mining has become in an interesting problem in data mining. This kind
of mining is performed taking into account some tolerance under a geometric transforma-
tion. The first geometric graph miner was gFSG [23, 24], which finds frequent geometric
subgraphs in collections of geometric graphs. This algorithm was followed by MaxGeo [3]
and FreqGeo [28], which were conceived for detecting particular subsets of frequent geometric
subgraphs.

In this paper, a new algorithm for frequent geometric subgraph mining called gsmFil,
is presented. This proposal is based on a pattern-growth depth-first strategy for traversing
the search space.

In literature, we can find geometric graphs whose edges are determined by some kind of
geometric relation between the vertices. As example of this, we have interval and Gabriel
graphs, Delaunay triangulations, and so on. All these geometric structures have some prop-
erties that could be exploited in the mining process. However, the modelling of objects by
graphs not always results in a graph with some specific properties, as Delaunay triangula-
tions for instance. Considering this, the algorithm for frequent geometric subgraph mining
presented in this work, does not assumes the existence of any additional information in the
structure of the processed graphs.

On the other hand, there are three main approaches in algorithms that use pattern recog-
nition on classification tasks: the statistical, syntactical and structural approaches [5]. In
statistical pattern recognition, the patterns are represented by feature vectors that can be
understood as a point in the n-dimensional real space. This representation offers useful prop-
erties as the mathematical operations available in a vector space, which can be efficiently
performed. The syntactical approaches, can be used to discriminate between different object
classes because they are encoded as a natural language elements. The structural approach
is based on symbolic data structures, such as strings, trees or graphs for pattern repre-
sentation. The last one considers spatial properties and characteristics of the objects and
inter-relationships between its component parts.

Taking into account these approaches, several works based on these types of represen-
tations of objects for classification tasks, have been reported [7, 31, 34, 33]. The idea of
mapping the patterns identified into a dissimilarity space using embedded sets of the n-
-dimensional feature space vector, was presented by Duin et al. [7] and Pekalskaet al. [31].
This approach was extended to map string representations into vectorial spaces [34], which
later was generalized to the domain of graphs [33]. Several authors [33, 5] propose a combi-
nation of both, structural and statistical approaches. The first one provide the preservation
of representational generalization of graphs. Moreover, the statistical pattern recognition
allows to use many clustering and classification algorithms reported, and the high perfor-
mance in mathematical computation in feature vector spaces. In these works, significant
improvement in the classification results are archived.

Another improve proposed in this paper, is the definition of a novel framework for geo-
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metric graph classification that uses the fusion of both statistical and structural approaches.
The main novelty of our proposal is that the described framework uses frequent geometric
subgraphs identified in a geometric graph mining process, as features for representing ob-
jects and build the feature vectors. The classification results of our proposal are evaluated
in a well know geometric graph dataset [32].

The basic outline of this paper is as follows. Section 2 provides some basic concepts
and related works. The new geometric method for frequent geometric subgraph mining is
provided in Section 3. This section also introduces the gsmFil algorithm. The framework
for graph-based classification is introduced in Section 4 as a case study to evaluate the
geometric algorithm proposed. The experimental results in two real collections are presented
in Section 5. Finally, conclusions of the research and some ideas about future directions are
exposed in Section 6.

2. Background

In order to explain the foundation of our algorithm, we start by providing the background
knowledge and notation used in the following sections. Next, the most relevant related works
are presented and we give an overview of some of them.

2.1. Basic concepts

In this work we used simple undirected labeled graph as a basis for geometric subgraph
mining. This kind of graph is defined as follow. Before describing their formal concept, we
introduce the domain of labels.

Let LV and LE be label sets, where LV is a set of vertex labels and LE is a set of edge
labels, the domain of all possible labels is denoted by L = LV ∪ LE .

A labeled graph in L is a 4-tuple, G = (V,E, I, J), where V is a set whose elements are
called vertices, E ⊆ {{u, v} | u, v ∈ V, u 6= v} is a set whose elements are called edges (the
edge {u, v} connecting the vertex u with the vertex v), I : V → LV is a labeling function

for assigning labels to vertices and J : E → LE is a labeling function for assigning labels to
edges.

Let G1 = (V1, E1, I1, J1) and G2 = (V2, E2, I2, J2) be two graphs, we say that G1 is a
subgraph of G2 if V1 ⊆ V2, E1 ⊆ E2, ∀u ∈ V1, I1(u) = I2(u), and ∀e ∈ E1, J1(e) = J2(e). In
this case, we use the notation G1 ⊆ G2 and we say that G2 is a supergraph of G1.

We say that f is an isomorphism between G1 and G2 if f : V1 → V2 is a bijective function
where:

• ∀u ∈ V1, I1(u) = I2(f(u)), and

• ∀{u, v} ∈ E1, {f(u), f(v)} ∈ E2 ∧ J1({u, v}) = J2({f(u), f(v)}).

When there is an isomorphism between G1 andG2, we say that G1 andG2 are isomorphic.
Using the labeled graph concept we can define geometric graphs. This kind of graph

plays an important role in the classification scheme presented in this paper.
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A geometric graph in L is a 5-tuple, G′ = (V,E, I, J,K), where G = (V,E, I, J) is a
labeled graph, K : V → R

2 is a function for assigning coordinates to vertices, R is the set of
real numbers, and K(u) 6= K(v) for each u 6= v. In this case, we say that G is the associated
labeled graph to G′.

In this paper, we use R2 as coordinate space for simplifying the explanation of our
proposal. However, our results could be extended to a three-dimensional space R3.

In the geometric context, two graphs may be geometrically similar and they can still
have very different vertex coordinates. An example of this fact is shown in Figure 1. This
situation can occur, because one of these graphs could be scaled, rotated, or translated with
respect to the other one. Therefore, for matching two geometric graphs we need to consider
the best geometric transformation between these graphs. It is important to note that in
some contexts, the rotation of two graphs must be the same in order to say that they are
similar. This can occur when the degree of rotation have semantic implications. For instance
in the representation of images of numbers or characters (9 is not the same as 6).

G'1

G'2

v1

v2

v3

v4

v5 u1

u3

u4

u5

u2

Figure 1: Two similar geometric graphs.

Let G′
1 = (V1, E1, I1, J1, K1) and G′

2 = (V2, E2, I2, J2, K2) be two geometric graphs, such
that their associated labeled graphs G1 and G2, respectively, are isomorphic. Let f be an
isomorphism between G1 and G2. A geometric transformation T in R2 can be defined as a
function T : R2 → R

2 such that

T

(

x
y

)

= λ

(

cos(ω) − sin(ω)
sin(ω) cos(ω)

)(

x
y

)

+

(

tx
ty

)

.

where λ is the scaling factor, ω is the rotation angle, tx and ty are the translations in the
X- and Y - axes respectively.

Let e1 = {vi, vj} ∈ E1 and e2 = {ui, uj} ∈ E2 such that f(vi) = ui and f(vj) = uj, the
geometric transformation T between e1 and e2 is calculated by choosing λ = ‖η1‖/‖η2‖, ω
the angle between the vectors η1 and η2, where η1 = K1(vi)−K1(vj), η2 = K2(ui)−K2(uj)
and ‖ · ‖ is the Euclidean norm in R2, and the translations tx and ty are calculated by

(

tx
ty

)

= K1(vi)− λ

(

cos(ω) − sin(ω)
sin(ω) cos(ω)

)

K2(ui).
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Figure 2: Transformed geometric graphs with a common reference frame. The distances between corre-
sponding vertices are indicated with the arrows.

In our experimentations we tested the two following expressions to compute the error of
a geometric transformation T for mapping G′

2 in G′
1

ǫ1(T ) = max
v∈V1

‖K1(v)− T (K2(f(v)))‖. (1)

ǫ2(T ) =

∑

v∈V1
‖K1(v)− T (K2(f(v)))‖

‖V1‖
. (2)

For example in Figure 2, we can see the transformation applied to G′
2 using the geometric

transformation for i = 1 and j = 2. In this Figure, the error of this transformation is the
highest distance between vertices linked by arrows when ǫ1(T ) is used, and the average of
these distances when we consider ǫ2(T ).

In this paper, we use this error concept as basis for a heuristic to calculate pseudo-best
geometric transformation between two geometric graphs.

2.2. A brief of traditional graph mining

Let D = {G1, G2, . . . , G|D|} be a collection of labeled graphs and let δ be a predefined
threshold of frequency. The support of a graph G in D is defined as the set of graphs
Gi ∈ D such that there is a subgraph isomorphism from G to Gi. The notations ∆(G,D)
and σ(G,D) = |∆(G,D)| can also be used for referring support and frequency of G in D,
respectively. A graph G frequently occurs in the collection D if σ(G,D) ≥ δ. Traditional
graph mining is the process of finding connected subgraphs that frequently occur in a col-
lection of labeled graphs. In Figure 3 we can see an example of a graph G that is subgraph
of three graphs of a collection D. The occurrences of G are marked in bold. In this case, the
support value is 3.

The first traditional graph miner was AGM [17], which allows us finding all frequent
(connected or unconnected) subgraphs in a collection of labeled graphs. This algorithm was
followed by AcGM [16] and FSG [22] for mining all frequent connected subgraphs. Both
algorithms are based on the original Apriori algorithm [2] for mining frequent itemsets.
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Figure 3: Support of graph in a collection D.

Later, pattern growth based algorithms such as Moss-MoFa [4], MoFa [4], gdFil [9],
gRed [10], FFSM [15], Gaston [26] and gSpan [35], were developed. Previous comparative
studies have shown that pattern growth based algorithms have better performance than
Apriori based ones [27]. Therefore, in this paper we use pattern growth based scheme as
basis for geometric graph mining. In our case, we use gdFil [9].

2.3. A brief of geometric graph mining

Geometric graph mining is an interesting problem in graph mining, where every vertex of
each graph have a coordinate in a two- or three-dimensional coordinate space. This problem
is more complex than the traditional graph mining [1, 9] because a non-geometric pattern
can be placed in an infinite number of geometric positions.

In the last ten years, some geometric graph miners have been published. For example,
the algorithm gFSG [23, 24] finds frequent geometric subgraphs in collections of geometric
graphs, considering rotation, scaling and translation invariants. This method also uses an
heuristic in order to extend geometric patterns and is presented as the geometric extension
of a traditional graph miner called FSG [22].

Moreover, there are another two algorithms called MaxGeo [3] and FreqGeo [28], which
were conceived considering some restrictions in the mining setup. MaxGeo only enumerates
the maximal frequent subgraphs with vertices of two dimension coordinates. This method
assumed zero tolerance, so patterns with small variations in their coordinates are considered
different. Also, the authors of this work do not present any kind of experimental results in
order to validate the efficiency or accuracy of its algorithm. On the other hand, in FreqGeo
a retrieval approach was proposed that, given a reference graph G′, it enumerate all frequent
geometric graph that are subgraphs of G′ [28]. This proposal is based on reverse search and
has a polynomial delay. As we can see, this method only finds a subset of all the frequent
geometric graphs that can be obtained in a specific collection.
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Finally, there is another approach [14] that do not perform mining on geometric graphs,
but uses the vertex coordinates to construct them.

2.4. A brief of classification using frequent patterns

As mentioned, frequent subgraph patterns have been successfully used for classification
tasks in different domains of science, for instance, in image processing [1, 8, 29, 30], chem-
ical compound studies [6, 18] and text mining [21]. However, only one of these solutions
uses frequent geometric subgraphs in classification tasks [6]. This method perform feature
(subgraph) selection using a heuristic to obtain discriminative features, purging the already
mined set of frequent subgraphs (geometric and non-geometric). From the features identified
using the mentioned selection strategy, the feature vectors which are used in classification
are built. However, such feature vectors reflect only the occurrence or not of each subgraph
in the graphs, leaving aside the degree of geometric distortion.

In our research, we propose a novel framework for geometric graph classification, con-
sidering only frequent geometric subgraphs as features for representing objets. Moreover,
we take into account the similarity values between geometric graphs for building feature
vectors. This framework was evaluated on an image collection and a molecular dataset.

3. Geometric subgraph detection

In this section, a new algorithm for frequent geometric subgraph mining is presented.
Before explaining the algorithmic details, we introduce the following definitions to facilitate
the description of our geometric method.

3.1. Geometric graph matching

Let G′
1 = (V1, E1, I1, J1, K1) and G′

2 = (V2, E2, I2, J2, K2) be two geometric graphs with n
vertices, such that their associated labeled graphs G1 and G2, respectively, are isomorphic.
Let f be an isomorphism between G1 and G2. In our work, the pseudo-best geometric
transformation between G′

1 and G′
2 is calculated by choosing the pair of edges {vi, vj} ∈ E1

and {f(vi), f(vj)} ∈ E2 such that the geometric transformation between them achieves the
minimum error.

Let T be the pseudo-best geometric transformation between G′
1 and G′

2. We say that G′
1

and G′
2 are isomorphic with tolerance τ if ǫ(T ) < τ . In this case, we define the similarity

function between G′
1 and G′

2 by mean of

φ(G′
1, G

′
2) =

1

nτ

∑

v∈V1

‖K1(v)− T (K2(f(v)))‖. (3)

The previously defined similarity function is normalized between 0 and 1. In Figure 2 we
can see an example of two transformed graphs. The distances between their corresponding
vertices are indicated with arrows. Two vertices where chosen as reference frame since the
graphs are represented in R2. If one of these distances is greater than the tolerance threshold
τ , these graph are not isomorphic with tolerance τ .
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3.2. Geometric graph clustering

Let G be a labeled graph and let H ′ = {G′
1, G

′
2, . . . , G

′
|H′|} be a set of geometric graphs,

such that G is the associated labeled graph of G′
i for each 1 ≤ i ≤ |H ′|. In this section, we

describe a clustering algorithm for grouping the elements in H ′ according to the similarity
function (3).

Clustering is the process of grouping a set of data objects into a set of subclasses, called
clusters; these clusters could be disjoint or not. A cluster is a collection of objects that
have high similarity in comparison to one another, but are very dissimilar to objects in
other clusters. In our work, objects refer to geometric graphs, so clusters could not be
disjoint. Moreover, it is not possible to know apriori the number of clusters that will be
generated. The unique two assumptions for preparing our clustering scheme is the error
function (2) and the tolerance threshold τ . For these reasons, we need to use an overlapped
clustering algorithm based on similarity graphs [36]. In this way, we can use any algorithm
for clustering that satisfy the mentioned aspects. In our case, we use ACONS [11].

ACONS algorithm, finds condensed clusters in which the detection of centers is very easy.
The first step of ACONS consists on building the similarity graph of the set of objects. In
this paper, the Algorithm 1 is used for building the similarity graph of H ′ in the geometric
graph context. The vertices of the similarity graph G are the geometric graphs of H ′ (see
line 1). The edges in G are added between geometric graphs which are mutually isomorphic
with tolerance τ (see line 5).

Algorithm 1: GetSimGraph(H ′, τ)

Input: H ′ = {G′
1, G

′
2, . . . , G

′
|H′|} - set of geometric graphs, τ - tolerance threshold

Output: G = (V, E) - similarity graph of H

V ← H ′ ; // The vertices of G are the elements in H ′
1

E ← ∅ ; // The edges of G are added in the following lines2

for i← 1 to |H ′| − 1 do3

for j ← i+ 1 to |H ′| do4

if G′
i and G′

j are isomorphic with tolerance τ then5

E ← E ∪ {G′
i, G

′
j};6

return (V, E);7

In the next steps, ACONS creates a set of clusters for structuring H ′ using G as start
point. In this way, ACONS marks every vertex of G as center or satellite using a graph
theoretic heuristic, and guaranteeing that each object of the collection belongs at least to
one group. Each one of these groups fulfil the following properties:

1. Let Cj be a group, then there is at least a element G∗ ∈ Ci such that every G′ ∈ Ci is
connected by an edge with G∗ in the similarity graph G. In this case, G∗ is the center
of Cj.
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Figure 4: Clustering of occurrences from a frequent subgraph.

2. Let Cj and Ck be two distinct groups, then their corresponding centers must also be
distinct.

The centers of such clusters are used for detecting frequent geometric subgraphs in sec-
tion 3.3.

In Figure 4(a) we can see four occurrences of a subgraph obtained with an algorithm of
mining frequent connected subgraphs. These occurrences are isomorphic to each other. Also,
in Figure 4(b) we can see the occurrences clustered using ACONS. Each cluster contains the
occurrences that are geometrically similar using the similarity function previously defined.

3.3. Geometric graph mining

Let D′ = {G′
1, G

′
2, . . . , G

′
|D′|} be a collection of geometric graphs, let τ be a previously

known tolerance threshold, and let δ be an also predefined threshold of frequency. The
support of a geometric graph G′ in D′ is defined as the set of graphs G′

i ∈ D′ such that there
is a subgraph of G′

i which is isomorphic to G′ with tolerance τ . The notation ∆(G′, D′)
is used for referring the above mentioned support and σ(G′, D′) = |∆(G′, D′)| is used for
indicating the frequency of G′ in D′. We say that G′ frequently occurs in the collection D′

if σ(G′, D′) ≥ δ. In this way, frequent geometric subgraph mining is the process of finding
the geometric graphs that frequently occur in a collection of geometric graphs.

The geometric graph miner proposed by us can be seen as an extension of any traditional
graph miner. Traditional graph miners work with labeled graph collection without consid-
ering geometric information. Thus, we can also use these methods for processing geometric
graph collections, but ignoring vertex coordinates.

Theorem 1. Let G be a frequent connected graph in D′, with σ(G,D′) ≥ δ. If G has only

one vertex or it has only one edge, then any geometric graph having G as associated graph,

is frequent in D′.

Proof. According to the hypotheses, G must be geometrically represented as a single point or
a segment. Therefore, any two geometric graphs, having G as associated graph, are mutually
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isomorphic with tolerance r, since there is always a geometric transformation between two
points or two segments. Thus, the frequency of these geometric graphs will be the same one
of G. ⊓⊔

Theorem 1 states that there are infinite frequent geometric subgraphs associated with a
frequent labeled graph with only one vertex or only one edge. Therefore, during geometric
subgraph mining we only need to report a geometric graph for each frequent connected graph
G with such conditions.

Theorem 2. Let G be a frequent connected graph in D′, with σ(G,D′) ≥ δ, let H ′ be

the set of geometric graphs G′ associated with G whose frequencies are at least 1, that is

σ(G′, D′) ≥ 1, and let G be the similarity graph of H ′ using τ as tolerance threshold. Suppose

that we apply ACONS in order to find clusters in G. Let Cj be a cluster outputted by ACONS,

whose center is G∗; then, the support of G∗ is ∆(G∗, D′) = {G′
i ∈ D′|∃G′ ∈ Cj, G

′ ⊆ G′
i}.

Proof. According to the criteria for building G, the G∗ is isomorphic with tolerance τ to any
geometric graph in Cj . Therefore, if G′ ∈ Ci and G′ ⊆ G′

i for some G′
i ∈ D′; then, there

is a subgraph G′
i which is isomorphic to G∗ with tolerance τ , and G′

i ∈ ∆(G∗, D′). Thus,
{G′

i ∈ D′|∃G′ ∈ Cj , G
′ ⊆ G′

i} ⊆ ∆(G∗, D′).
On the other hand, if Gi ∈ ∆(G∗, D′) then there is a G′ such that G′ ⊆ Gi, G

′ is isomor-
phic with tolerance τ to G∗. Therefore, G′ ∈ Cj , since σ(G′, D′) ≥ 1. Thus, ∆(G∗, D′) ⊆
{G′

i ∈ D′|∃G′ ∈ Cj , G
′ ⊆ G′

i}. Finally, ∆(G∗, D′) = {G′
i ∈ D′|∃G′ ∈ Cj, G

′ ⊆ G′
i}. ⊓⊔

Algorithm 2: gsmGeomSearching (D′, G, τ , δ)

Input: D′ - geometric graph collection, G - frequent labeled graph with at least two
edges, τ - tolerance threshold, δ - frequency threshold

Output: R - set of frequent geometric graphs

H ′ ← ∅;1

forall G′
i ∈ ∆(G,D′) do2

forall geometric graph G′ ⊆ G′
i whose associated graph is isomorphic to G do3

H ′ ← H ′ ∪ {G′};4

G ← GetSimGraph (H ′, τ);5

C ← ACONS (G, τ);6

R← ∅;7

forall cluster Cj ∈ C do8

G∗ ← the center of Cj;9

if σ(G∗, D′) ≥ δ then10

R← R ∪ {G∗};11

return R;12

Theorem 2 states that the clusters outputted by ACONS can be used for detecting
frequent geometric subgraph associated with a labeled graph G with more than one edge,
see Algorithm 2.
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Lines 1-4 of Algorithm 2 are dedicated for gathering the elements of H ′, which is the
set of geometric graphs associated with G whose frequencies is at least 1. Line 5 is an
invocation to the function GetSimGraph, see Algorithm 1, to calculates the similarity graph
G of H ′ regarding the threshold τ . The graph G is used as input for the clustering algorithm,
ACONS, in line 6. Thus, the last lines of Algorithm 2 are focused on detecting frequent
geometric subgraphs, according to the Theorem 2. The frequency of each center G∗, in
line 9, is efficiently calculated by storing the supergraphs Gi ∈ D′ of each geometric graph
in the cluster C. Moreover, the support of the labeled graph G, and geometric subgraph of
each Gi, can also be calculated using the embedding structure introduced by the traditional
graph miner gdFil [9].

Algorithm 3: gsmFil(D′, τ , δ, S)

Input: D′ - geometric graph collection, τ - tolerance threshold, δ - frequency
threshold

Output: S - mining results

Remove infrequent vertices and edges from D′;1

S ← all frequent vertices including the coordinates (0, 0) to each vertex;2

S1 ← all frequent 1-edge labeled graphs;3

forall code G ∈ S1 do4

gsmFilMining(D′,G,δ,S);5

D′ ← D′ \G;6

if |D′| < δ then break;7

Algorithms 3 and 4 shown the whole pseudo-code of our gsmFil algorithm. The main
method is gsmFil (see Algorithm 3) which starts by removing infrequent vertices and edges
fromD′. Afterwards, frequent geometric graphs with only one vertex are calculated. Accord-
ing to Theorem 1 these graphs are also frequent in the geometric context. The coordinates
of the first vertex of each frequent graph found will be (0, 0) in order to use the same coor-
dinate system for all of them. Lines 4-8 work identically to the ancestor gdFil [9], traversing
the set of labeled graphs with only one edge. For each labeled graph with only one edge the
gsmFilMining algorithm is invoked. At the end of each iteration, the used edge is dropped
from the collection. This means that it will not be used any more as a possible extension in
the next iterations.

The Algorithm 4 recursively generates all labeled graphs that hold G, while the generated
DFS codes are frequent. Lines 1-3 are used for detecting frequent geometric graphs with
only one edge. The coordinates of the second vertex of each frequent geometric graph found
will be (0, 1). Thus, the coordinates of the next vertices found will be transformed according
to the first two vertices of the same graph. Line 4-8 use the function gsmGeomSearching (see
Algorithm 2) to detect frequent geometric graphs with more than one edge. Next, lines 9-
-13 work identically to its ancestor gdFil, traversing frequent geometric labeled subgraphs,
removing duplicates candidates, calculating embedding structures, and so on [9].
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Algorithm 4: gsmFilMining (D′, G, τ , δ, S)

Input: D′ - geometric graph collection, G - frequent labeled graph, τ - tolerance
threshold, δ - frequency threshold

Output: S - mining results

if G has only one edge then1

G′ ← a geometric graph whose associated graph is G and the coordinates of the2

first and second vertices are (0, 0) and (0, 1), respectively;
S ← S ∪ {G′};3

else4

R← gsmGeomSearching (G, τ , δ, S);5

if R = ∅ then return;6

else S ← S ∪ R;7

ME ← the set of non-duplicates extensions of G in D′, using the procedures designed8

for gdFil;
Remove from ME non-frequent extensions, according to δ;9

forall extension e ∈ME do10

gsmFilMining(D, G ⋄ e, τ , δ, S);11

4. Classification scheme

In order to evaluate the quality of the patterns identified, we use the frequent geometric
subgraphs detected on classification tests. The package libSVM1 is used for graph classifi-
cation through Support Vector Machine (SVM) classifier.

Given a training set of geometric graph T = {GT
1 , G

T
2 , . . . , G

T
m}, we obtain a representa-

tion function f that will be used to build the features matrix of T . We subsequently employ
a classifier generator that uses this matrix as data to produce a classifier. Before the classi-
fication phase of a set of geometric graph S = {GS

1 , G
S
2 , . . . , G

S
n}, we applied the function f

to S in order to obtain the features matrix that describe S, based on the data collected from
T . With these two matrices we proceed to classify S. We can see the described method
represented in Figure 5.

Our main contributions are focused on the process of construction of the feature matrices
using the frequent geometric subgraphs extracted from T (see Section 3.3). The construction
of the features matrices is presented in detail in section Section 4.1.

4.1. Classification task

Given the set F = {S1, S2, . . . , Sd} of frequent geometric subgraphs of T , and a set of
geometric graphs R = {GR

1 , G
R
2 , . . . , G

R
m}, the function f returns a feature vector f(GR

i ) =
{c1, c2, . . . , cd} where d is the total number of geometric subgraphs identified. Thus, we build
a matrix where the row number (1 ≤ i ≤ m) corresponds to the number of graph in the

1http://www.csie.ntu.edu.tw/∼cjlin/libsvm
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Figure 5: Classification scheme.

collection R, and the number of columns (1 ≤ j ≤ d) corresponds to the number of frequent
geometric subgraphs in F . Each feature value can be assigned using the follow settings:

• Binary setting : The value of an entry vi,j of the matrix is vi,j = 1 if Sj occurs in GR
i ,

vi,j = 0 otherwise.

• Similarity setting : The value of an entry vi,j of the matrix is the highest similarity value
of the occurrences of Sj in GR

i , and vi,j = 0 in cases where Sj does not occur in graph
GR

i . The similarity value of each feature is obtained with the following expression:

sim(GR
i , Sj) = max

G′⊆GR

i

{φ(Sj, G
′)}, (4)

where φ is the formula (3). This value can by efficiently pre-calculated during the
mining and included in the output of gsmFil.

In Figure 6 we can see the steps followed in order to obtain the representation function.

5. Experimental results

In this section, we show experimental results that validate the efficacy of the patterns
identified, using frequent geometric subgraph mining for classification tasks. The results of
classification using our proposal and gdFil (proposed by Gago-Alonso et al. [9]) algorithm
are compared. The last one is chosen as the representation of the algorithms for exact
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frequent subgraph mining; these algorithms do not consider the geometric information, only
the labels of vertices. Notice that VEAM algorithm [1] is not used in our experiments because
we do not have any substitution matrix for the collection employed. For the experiments
we used an available geometric labeled graph collections proposed by Riesen & Bunke [32].
This collections have for each vertex a two-dimensional attribute giving its position.

All our experiments were carried out using a personal computer (64 bits) Intel (R) Core
(TM) 2 Quad CPU Q9450 @ 2.66 GHz with 4 Gb main memory. The algorithm for frequent
geometric subgraph mining was implemented in ANSI C language and compiled using gcc
compiler of GNU/Linux with -O0 optimization.

5.1. AIDS graph collection

The AIDS database [32] is divided into three disjoint collections: ”training”, ”valid” and
”test”. In our experiments we used the ”train” collection, composed by 250 graphs, in order
to train the classifier. We also used the ”test” collection, formed by 1500 graphs, to test
the classifier previously trained. The graphs contained in this database are divided into two
classes (active and inactive). These classes represent molecules with activity against HIV
or not. Each graph is a molecular compound where each node represents an atom and edges
are the covalent bonds.

The average size of these graphs is 16.24 (in terms of the number of edges) with 38
vertex labels and 3 edge labels. Each vertex represents an atom and is labeled with the
number of the corresponding chemical symbol. Each edge represents a covalent bond and
is labeled with the valence of the linkage. In Figure 7 (provided with the collection as a
sample) molecular compounds of both classes are illustrated.

5.2. Classification results

As we mentioned in Section 4.1, the SVM classifier is used in this paper. On this
classifier two kernel functions are employed : Sigmoid and Radial Basis Function (RBF).
The classification is performed using both the binary setting and similarity settings on
feature vectors. The binary setting is used for gdFil results, while the similarity setting is
used for gsmFil results. The parameters of the kernels are estimated performing a cross-
validation. The classification accuracy is tested on ”test” collection.
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Figure 7: A molecular compound of both classes (inactive and active in the same order).

The classification results where performed with with τ = 4. These values are shown in
Figure 8 and Figure 9 using e1 and in Figure 10 and Figure 11 with e2. The value of τ was
selected according to the proximity As we can see, our proposal outperform gdFil for every
support value. The results obtained by our proposal, in some cases are greater than 98% of
accuracy using e1 and a sigmoid kernel. These values are grater than the reported in AIDS
database [32]. The results obtained with a RBF kernel or e2 are slightly less accurate.

Notice that one of the reasons of the use of geometric methods is that exact ones cannot
identify enough features for a good classification. In Table 1 we can see that the amount
of patterns identified by geometric methods is greater that non-geometric algorithm on this
database. Also, the geometric information provides important information that is more
representative of the collection and is wasted by exact methods like gdFil.

Table 1: Number of patterns identified by gdFil and our geometric algorithm (τ = 1) on AIDS Database
with several support values.

Support (δ) exact algorithm our geometric algorithm
10% 200 996

15% 99 520

20% 54 309

25% 33 219

30% 28 142
35% 18 77

40% 15 66

In addition, in Table 2 we show the results of the classification using several values for τ
on AIDS database, with 10% as support and a sigmoid kernel. The threshold τ have a great
impact on the accuracy, as evidenced in the results shown. This occurs because τ plays an
important role in the process of finding geometric isomorphism between graphs. The value
of τ is directly proportional to the number of found isomorphisms between the geometric
graphs. As we can see in the referred figure, the optimal value is reached with τ = 4.

Also, in Table 3 the execution times of the whole process of parameters adjustment,
training and classification are shown with different values of τ . As we can see, τ has impact
in both: accuracy and execution time, so the correct selection of this value is a very critical
step in our proposal.
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Figure 8: Accuracies achieved using SVM with a sigmoid kernel and e1.
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Figure 9: Accuracies achieved using SVM with a RBF kernel and e1.

Table 2: Accuracies achieved using SVM with a Sigmoid kernel and δ = 10% in AIDS collection, varying
tolerance threshold.

Tolerance (τ) exact algorithm our geometric algorithm
3.5 87.33%

4.0 98.06%

4.5 97.60%

5.0 60.04% 96.80%
5.5 97.60%

6.0 97.73%
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Figure 10: Accuracies achieved using SVM with a sigmoid kernel and e2.

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

A
c

c
u

ra
c

ie
s

 (
%

)

Support threshold (%)

RBF Kernel with e2

gdFil

Our proposal

Figure 11: Accuracies achieved using SVM with a RBF kernel and e2.

Table 3: Executing times using SVM with a Sigmoid kernel and δ = 10% in AIDS collection, varying
tolerance threshold.

Tolerance (τ) Execution time (in seconds)
3.5 217

4.0 358

4.5 401

5.0 478
5.5 513

6.0 587
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We also conducted experiments that validate the impact of the use of a similarity function
in our approach. We performed two experiments in AIDS collection: the first one using a
binary setting for the feature values and the second one using the similarity setting previously
defined. In Figure 12 we can see the results: the use of similarity settings have a positive
impact on the accuracy of the classification process. As in previously made experiments,
the values of τ was 4.
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Figure 12: Accuracies achieved in AIDS collection using our proposal with binary and similarity settings.

In summary, the results shown that using geometric algorithms we can achieve better
accuracy in most of the cases than with exact ones, for classification task. These results
illustrate the usefulness of the patterns identified by frequent geometric subgraph mining
process. These patterns provide more representative information because our algorithm
takes into account the geometric vertex positions of the graphs. Moreover, a spatial tolerance
in the vertices is allowed. We can see that the better classification is achieved using Sigmoid
kernel function for the data types used in the experiments. Finally we have observed that
for very small values of δ, the accuracy is decreased due to the poor representativeness of the
encountered patterns. On the other hand, if the value of δ is to high, a very small number
of patterns will be found.

6. Conclusions

In this paper, we proposed a new algorithm called gsmFil for frequent geometric sub-
graph mining on geometric graph collections where graphs are labeled and undirected. Using
gsmFil frequent patterns are identified in graph collections allowing slight geometric trans-
formation differences between graphs.

The experimental results shown the efficacy of our geometric algorithm versus traditional
graph miners on graph-based classification. In fact, the patterns detected by gsmFil con-
sider spatial variations which are useful for classifying and are not exploited on traditional
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approaches. These spatial variations can be used for modelling many real datasets. As
an example of the application of our approach, we proposed in this paper a solution for
real graph-based collections. In the experiments we can see that the accuracy results of
classification using geometric patterns are better than the obtained with an exact mining
approach. In fact, the classification result achieved in AIDS using our proposal, are better
than those reported in literature, in most cases. Thus, we can conclude that the patterns
identified by our proposal have a positive impact in some graph-based classification tasks.

As future work, we are going to develop new ways for taking advantage of feature selection
strategies for improving geometric graph classification. These strategies in combination
with our proposal could be useful for reducing dimensionality and improving the efficiency
of geometric graph classifiers. Also, the patterns found may have a great impact in the
construction of indices for indexing tasks.
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