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Abstract. Frequent approximate subgraph (FAS) mining has become
an interesting task with wide applications in several domains of science.
Most of the previous studies have been focused on reducing the search
space or the number of canonical form (CF) tests. CF-tests are commonly
used for duplicate detection; however, these tests affect the efficiency of
mining process because they have high computational complexity. In this
paper, two prunes are proposed, which allow decreasing the label space,
the number of candidates and the number of CF-tests. The proposed
prunes are already used and validated in two reported FAS miners by
speeding up their mining processes in artificial graph collections.
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1 Introduction

In recent years, the necessity to use approximate matching in graph mining tasks
has increased [7]. In fact, there are concrete problems where exact matching could
not be applicable with positive outcome [5]. Sometimes, interesting subgraphs
show slight differences throughout datasets. This means that we should tolerate
certain level of geometric distortion, slight semantic variations, vertices or edges
mismatch in frequent pattern search. For this reason, it is required to evaluate the
similarity between graphs allowing some structural differences, i.e. considering
approximate matching.

Taking into account these facts, several algorithms have been developed for
FAS mining which use different approximate graph matching techniques in dif-
ferent domains of science [1, 4–6, 8–11]. However, only APGM [6] and VEAM [1]
detect the FASs in a graph collection, where the approximation consists in con-
sidering some variations of the data through the substitution probability, keeping
the topology of the graphs. These algorithms specify which vertices, edges or la-
bels can replace others. Thus, the idea that not always a vertex label or an edge
label can be replaced by any other is defended. APGM only deals with the vari-
ations between the vertex labels while VEAM perform the mining process using
the vertex and edge label sets.

On the other hand, candidates are represented by a unique code called CF
for frequency counting. In order to obtain the occurrences of the candidates are
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performed CF-tests to each of them. However, the computational complexity
of a CF-test is very high [3]. In this paper, we introduce several prunes for
improving FAS mining in an approximate framework related to APGM and
VEAM approaches. Using these prunes it is possible to reduce the label space
and the search space, as well as number of candidates. This fact also allows us
to reduce the number of CF-tests.

The basic outline of this paper is as follows. Section 2 provides some basic
concepts. The prunes for speeding up approximate methods are provided in
section 3. The experimental results are discussed in section 4. Finally, conclusions
of the research and some ideas about future directions are exposed in Section 5.

2 Basic Concepts

This work is focused on simple undirected labeled graphs. Henceforth, when
we refer to graph we assume this type of graph. Before presenting their formal
definition, we define the domain of labels.

Let LV and LE be label sets, where LV is a set of vertex labels and LE is a
set of edge labels. The domain of all possible labels is denoted by L = LV ∪LE .

A labeled graph in L is a 4-tuple, G = (V,E, I, J), where V is a set whose
elements are called vertices, E ⊆ {{u, v} | u, v ∈ V, u �= v} is a set whose
elements are called edges (the edge {u, v} connecting the vertex u with the
vertex v), I : V → LV is a labeling function for assigning labels to vertices and
J : E → LE is a labeling function for assigning labels to edges.

Let G1 = (V1, E1, I1, J1) and G2 = (V2, E2, I2, J2) be two graphs, we say
that G1 is a subgraph of G2 if V1 ⊆ V2, E1 ⊆ E2, ∀u ∈ V1, I1(u) = I2(u), and
∀e ∈ E1, J1(e) = J2(e). In this case, we use the notation G1 ⊆ G2 and we say
that G2 is a supergraph of G1.

Given two graphs G1 = (V1, E1, I1, J1) and G2 = (V2, E2, I2, J2), where G1 ⊆
G2, we say that e = {u, v} ∈ E2 is an extension of G1 if: V2 = V1 ∪ {v} and
E1 = E2 \ {e}. This fact can be denoted by G2 = G1 � e. We say that e is a
backward extension if v ∈ V1, otherwise we say that it is a forward extension (it
extends the vertex set of G1).

Given G1 and G2, we say that f is an isomorphism between these graphs if
f : V1 → V2 is a bijective function, where ∀u ∈ V1, f(u) ∈ V2 ∧ I1(u) = I2(f(u))
and ∀{u, v} ∈ E1, {f(u), f(v)} ∈ E2∧J1({u, v}) = J2({f(u), f(v)}). When there
is an isomorphism between G1 and G2, we say that G1 and G2 are isomorphic.

Let Ω be the set of all possible labeled graphs in L, the similarity between
two elements G1, G2 ∈ Ω is defined as a function sim : Ω × Ω → [0, 1]. We say
that the elements are very different if sim(G1, G2) = 0, the higher the value
of sim(G1, G2) the more similar the elements are and if sim(G1, G2) = 1 then
there is an isomorphism between these elements.

Let G1 = (V1, E1, I1, J1), G2 = (V2, E2, I2, J2) and T = (VT , ET , IT , JT ) be
three labeled graphs in L, where T ⊆ G2. Using an isomorphism threshold τ , we
say that T is an embedding of G1 in G2 if sim(G1, T ) ≥ τ . The embedding set
of G1 in G2 is denoted by O(G1, G2).



318 N. Acosta-Mendoza, A. Gago-Alonso, and J.E. Medina-Pagola

Let T be an embedding of G1 in G2 = (V2, E2, I2, J2), using an isomorphism
threshold τ . The extension set of T is denoted by ExtSet(T ) = {e ∈ E2 | e is
an extension of T }.

Let D = {G1, . . . , G|D|} be a graph collection and let G be a labeled graph
in L, the support value of G in D is obtained through the following equation:

supp(G,D) =
∑

Gi∈D

sim(G,Gi)/|D| (1)

If supp(G,D) ≥ δ, then the graph G is approximately frequent in the collection
D, saying that G is a FAS in D. Notice that when we refer to a graph collec-
tion we assume that it is the representation built from a real graph collection.
The value of the support threshold δ is in [0, 1] assuming that the similarity is
normalized to 1. FAS mining consists in finding all the FASs in a collection of
graphs D, using a similarity function sim and a support threshold δ.

3 Prunes for Mining

In this section, we introduce two prunes for FAS mining. These prunes can be
used in any FAS miner which uses substitution matrices and they are based on
the downward closure property [2]. VEAM and APGM are used as basis for
showing the improves.

The candidate generation process consists of extending a subgraph pattern
by an edge. This is done searching the possible approximate label set of the
new edge e and for every possible label of e seeking the possible label set of the
new vertex if e is a forward extension. Finally, candidates are generated using
those labels that satisfy definitions “Vertex Approximate Sub-isomorphism1” and
“Approximate Sub-isomorphism2” presented by Acosta-Mendoza et al. [1]. In
the above mentioned label sets, there are labels that could replace another ones
with a similarity less than the threshold τ . Using these labels it is not possible to
obtain candidates; however, the algorithms lose time checking these extensions.
To formalize the previous assertions the following definition is presented.

Definition 1 (Useful label set). Let lv ∈ LV , le ∈ LE be a vertex label and an
edge label respectively, we say that the label sets, for a vertex label lv and an edge
label le, are useful label sets if they are obtained by the functions U τ

V : LV → PLV

and U τ
E : LE → PLE such that:

– U τ
V (lv) = {l ∈ LV |MVl,lv

MVl,l
≥ τ},

– U τ
E(le) = {l ∈ LE|MEl,le

MEl,l
≥ τ};

where, PLV and PLE are the power sets of LV and LE respectively3.

1 Definition used as similarity function in APGM
2 Definition used as similarity function in VEAM
3 For a set X, the power set of X is PX = {Y |Y ⊆ X}.
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Notice that, for each lv ∈ LV , U
τ
V (lv) �= ∅, since at least lv ∈ U τ

V (lv). In the same
way, for each le ∈ LE , U

τ
E(le) �= ∅, since at least le ∈ U τ

E(le).

Theorem 2. Let G be a labeled graph, let MV and ME be a substitution ma-
trix indexed by vertex labels and a substitution matrix indexed by edge labels
respectively; let v, v′ be two vertices with labels lv and lv′ respectively, and let
e = {u, v}, e′ = {u, v′} be two edges with labels le and le′ respectively. Then the
following statements are true:

1. If lv′ /∈ U τ
V (lv), then G � e′ �=A G � e (in the same way G � e′ �=a G � e).

2. If le′ /∈ U τ
E(le), then G � e′ �=A G � e.

Proof. In these statements, the definitions of approximate sub-isomorphism of
APGM and VEAM are used. These definitions use a product of substitution
probabilities with the requirement that its result should be greater than or equal
to τ . These substitution probability values are in the interval [0, 1]. Therefore,
if a factor of this product is lesser than τ then its value is less than τ too and
does not generate an approximate subgraph candidate. �

On the other hand, in APGM and VEAM, the approximation is based on the
semantic of labels. For this reason, we proposed a heuristic to reduce the search
space, according to some rules that can be applied by these FAS miners. These
rules are: (1) The vertices (and its corresponding edges), which are not used as
an embedding of a single-vertex FAS, are removed from each graph in D; (2) The
edges, which are not used as an embedding of a single-edge FAS, are removed
from each graph in D.

Theorem 3. Let LV
U ⊆ LV be the label set used by the single-vertex FASs in a

collection D and u be a vertex with label lu ∈ LV . The following statements are
true:

1. The vertex u is not used as an embedding by any single-vertex FAS if and
only if LV

U ∩ U τ
V (lu) = ∅.

2. If LV
U ∩U τ

V (lu) = ∅ then a non-frequent subgraph is obtained when e = {v, u}
extends an existing FAS G in D, where u is the new vertex of this forward
extension.

Proof. First, we will prove statement 1. Suppose that the vertex u is used as an
embedding by a single-vertex FAS Y = ({w}, ∅, IY , JY ). If this occurs, then the
label lw ∈ LV

U of the vertex w replaces the label lu with a value greater than or
equal to τ , i.e. lw ∈ U τ

V (lu), and LV
U ∩U τ

V (lu) �= ∅. Therefore, if LV
U ∩U τ

V (lu) = ∅,
then the vertex u is not used as an embedding by any single-vertex FAS. On
the other hand, assuming that LV

U ∩ U τ
V (lu) �= ∅, then u is not used as an

embedding by any single-vertex FAS because their labels replace lu with values
less than τ . Therefore, if u is used as an embedding by a single-vertex FAS, then
LV
U ∩ U τ

V (lu) = ∅.
Next, we will prove the second statement. Suppose that we have a forward

extension e = {v, u}, with u as the new vertex, of an existing FAS G in D.
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If LV
U ∩ U τ

V (lu) = ∅ then the vertex u is not used as an embedding by any
single-vertex FAS, according to the first part of the Theorem and, as a directly
consequence, the single-vertex subgraph T = ({u}, ∅, IT , JT ) is non-frequent. As
T ⊆A G�e, applying the downward closure, we have supp(G�e,D) ≤ supp(T,D),
then G � e is a non-frequent pattern because T is a non-frequent. Therefore, to
prune the vertices with label lu ofD does not change the frequent pattern output.
�

Theorem 4. Let LE
U ⊆ LE be the label set used by the single-edge FASs in a

collection D and an edge e with label le ∈ LE, the following statements are true:

1. The edge e is not used as an embedding by any single-edge FAS if and only
if LE

U ∩ U τ
E(le) = ∅.

2. If LE
U ∩ U τ

E(le) = ∅ then a non-frequent subgraph is obtained if e extends a
FAS G in D.

Proof. First, we will prove statement 1. Suppose that the edge e is used as an
embedding by a single-edge FAS Y = (VY , {e′}, IY , JY ). If this occurs, then the
label le′ ∈ LE

U of the edge e′ replaces the label le with a value greater than or
equal to τ , i.e. le′ ∈ U τ

V (le), and LE
U ∩U τ

E(le) �= ∅. Therefore, if LE
U ∩U τ

E(le) = ∅,
then the edge e is not used as an embedding by any single-edge FAS. On the other
hand, assuming that LE

U ∩U τ
E(le) �= ∅, then e is not used as an embedding by any

single-edge FAS because their labels replace le with values less than τ . Therefore,
if e is used as an embedding by a single-edge FAS, then LE

U ∩ U τ
E(le) = ∅.

Next, we will prove the second statement. Suppose that we have an extension
e of an existing FAS G in D. If LE

U ∩ U τ
E(le) = ∅ then the edge e is not used

as an embedding by any single-edge FAS, according to the first part of the
Theorem and, as a directly consequence, the single-edge subgraph T with le as
edge label is non-frequent. As T ⊆A G � e, applying the downward closure, we
have supp(G � e,D) ≤ supp(T,D), then G � e is a non-frequent pattern because
T is a non-frequent. Therefore, to prune the edges with label le of D does not
change the frequent pattern output. �

VEAM and APGM are shown through three pseudo-codes where the common
main algorithm consists in finding the single-vertex FAS and single-edge FAS
sets, then the first set is stored in set F and only the second one is stored in set
C (see Algorithm 1 in Figure 1). A prune using Theorem 3 as basis is performed
in line 2. After obtaining the single-edge FAS set, a prune using Theorem 4 as
basis is performed in line 5. As we can see, in order to apply the last prune, a
breadth-first search (BFS) is required to obtain the approximate frequent edges
in the initial process. Later, for each pattern in C the algorithm Search is
invoked. When all single-edge FASs in C have been extended, then the set F of
all FASs in D is returned.

The other common pseudo-code of VEAM and APGM performs the exten-
sion of subgraph patterns on one edge using DFS (see Algorithm 2 in Figre 1).
Thus, all candidate subgraphs are created using the label set obtained through
the “appLSetVEAM” algorithm, in the VEAM case, or “appLSetAPGM” al-
gorithm, in the APGM case, in line 2. In Algorithm 3 (see lines 1 and 4) and
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in Algorithm 4 (see line 3), a prune using theorem 2 as basis is included, where
only the labels in U τ

E(J(e)) and U τ
V (I(v)) are used.
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Fig. 1. Pseudo-code of VEAM and APGM using the proposed prunes

4 Experimental Results

All our experiments were carried out using a personal computer (x64 platform)
Intel (R) Core (TM) 2 Quad CPU Q9450 @ 2.66 GHz with 4 Gb main memory.
We used ANSI C language and we compiled the algorithms using gcc compiler
of GNU/Linux.

In this paper, the mining process is performed in the several image collections
used by Acosta-Mendoza et al. [1]. The impact of our prunes in FAS mining on
image collections is evaluated with the aim of showing the usefulness of these
prunes. The performance of VEAM and APGM4 with and without our prunes
in several collections are compared as follows. Note that in Table 1 are shown
only the results of the algorithms in two collections (D700 and D600) due to
space restrictions.

First, VEAM and APGM with and without the prunes proposed are compared
regarding the number of exhaustive CF-tests that they perform in their mining
strategies (see subtable a) in Table 1). Note that the original algorithms are de-
noted by VEAM and APGM, and the algorithms with our prunes are denoted by
VEAMwP and APGMwP. These CF-tests become much more complex to great
extent with the increase of the candidate size. In this comparison, the number

4 The APGM version used in our experiments was implemented by us to detect all
frequent vertex approximate subgraphs and not just the clique subgraphs as pro-
posed [6].
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of such expensive CF-tests, in most of the cases, were reduced in 30% when our
prunes are used. The fact that these prunes reduce the number of candidates to
be processed impacts in a positive manner in the algorithm’s performance.

Second, the performance, in terms of runtime, of APGM and VEAM with and
without the prunes proposed are compared. In this comparison the runtimes were
reduced, in most of the cases, in 15%, when our prunes are used. Notice that
we use the same support threshold and isomorphism threshold values presented
by Acosta-Mendoza et al. [1] with the purpose of showing the improvement
achieving the same accuracies obtained by them.

Table 1. Comparison between VEAM and VEAMwP, and between APGM and
APGMwP in image collections using τ = 0.4

a) Number of CF-tests computed
Support (δ)

Algorithm 20% 25% 30% 35% 40% 45% 50% 55% 60%
D700

APGM 153524 48437 11927 3555 1407 992 992 904 829
APGMwP 67197 21709 4478 1131 303 187 187 180 174

D600
APGM 58300 24453 8278 2515 1081 963 963 883 808

APGMwP 28950 12133 3245 848 257 186 186 179 173
D700

VEAM 350589 114907 33423 11105 5212 2600 2302 2118 1687
VEAMwP 259034 67405 17264 5505 2522 477 453 428 371

D600
VEAM 157751 79555 26160 8241 4374 2526 2236 2056 1641

VEAMwP 113005 47699 13662 4167 2049 475 452 427 370

b) Runtimes (s)
D700

APGM 58.61 9.95 2.13 0.76 0.42 0.36 0.35 0.33 0.30
APGMwP 31.24 6.61 1.60 0.59 0.29 0.17 0.17 0.16 0.15

D600
APGM 11.00 3.69 1.27 0.46 0.29 0.28 0.28 0.26 0.23

APGMwP 7.24 2.71 0.96 0.36 0.19 0.13 0.13 0.12 0.12
D700

VEAM 133.78 25.50 6.51 2.43 1.41 0.94 0.88 0.81 0.67
VEAMwP 114.93 20.34 5.53 2.15 1.24 0.42 0.40 0.39 0.34

D600
VEAM 29.91 12.69 4.19 1.57 0.98 0.72 0.68 0.63 0.52

VEAMwP 25.47 10.37 3.53 1.34 0.83 0.33 0.30 0.29 0.26

In summary, we can conclude that our prunes positively impact the perfor-
mance of APGM and VEAM. The prune based on Theorem 2 is very effective
when the number of dissimilarities between labels or the number of candidates
are increased. The prune using Theorems 3 and 4 is considered effective when the
collection has many non-frequent vertices and edges, and its graphs are dense.
In general, the new prunes help us to reduce runtimes of VEAM and APGM.
These results ensure the usefulness of the prunes proposed in this paper.

5 Conclusions and Future Work

In this paper, we introduced a prune which is useful to reduce the number of
CF-tests during the FAS mining. This prune allows decreasing the search space
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of collection’s graphs. Another prune, which uses only the label set that comply
with the isomorphism threshold, was proposed. These prunes are implemented
and tested in already reported FAS miners, APGM and VEAM. As can be seen
in the experimental results, the number of CF-tests is notably reduced, and the
improvement in time is appreciable.

As future work, we are going to develop new ways for taking advantage of the
candidate reduction in order to achieve better performance in FAS mining. This
allows us to accelerate the support calculation by the reduction of the number
of test sub-isomorphism, and in turn, the number of embedded to keep.
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