
A Framework for Intrusion Detection based on Frequent Subgraph Mining

Vitali Herrera-Semenets∗ Niusvel Acosta-Mendoza ∗ Andrés Gago-Alonso ∗

Abstract

In many application contexts, graphs have been widely used

to model data due to their expressiveness and their suitabil-

ity, since some kind of entities and their relationships must

be encoded in the same structure. Nowadays, the progress

of the technologies of computer and communications has

boosted the appearing of unusual or suspicious activity, af-

fecting the network operations. In this paper, a framework

for intrusion detection based on frequent subgraph mining

is presented. The former scheme includes a novel strategy

for reducing the volume of data to be processed, without

losing useful information. Finally, our proposal, using dif-

ferent settings, is analyzed and compared regarding some

state-of-the-art approaches, achieving good results.

Keywords: intrusion detection, feature selection,
graph mining, classification.

1 Introduction

New technologies have enabled the use of the network,
increasing the flow of information. This progress also
brings in malicious users known as intruders. Intruders
achieve their goals by exploiting weaknesses or back-
door’s in vulnerable systems, unpatched ones, or sys-
tems infected by trojans. The need to alert this kind
of attack boost up the use of intrusion detection sys-
tems (IDS), allowing it to prevent or reduce the damage
caused by intruders.

In this paper, a framework for intrusion detection
is presented. The proposal consists of two stages: train-
ing and classification. Meanwhile, the training stage in-
cludes four modules: preprocessing, graph mining, rep-
resentation, and training. Preprocessing module is fo-
cused on reducing the volume of input data, without
losing useful information by combining two already re-
ported feature selection algorithms [7, 6]; here, the val-
ues of each selected features are clustered and relabeled.
In the graph mining module, each transaction is repre-
sented as a graph. Thus, the training collection becomes
a graph collection, which is mined for finding a set of fre-
quent subgraphs. Next, in the representation module,
each transaction is represented by a feature vector, tak-

∗Advanced Technologies Application Center. 7a #
21406, Playa, C.P. 12200, Havana, Cuba - CENATAV -
{vherrera,nacosta,agago}@cenatav.co.cu

ing into account the frequent subgraphs. Finally, the
resulting set of feature vectors is used, in the training
module, for obtaining the classification model.

The features and labels calculated during train-
ing are used in the classification stage, for obtaining
the graph of each upcoming unclassified transaction.
Next, the resulting graph is contrasted regarding the al-
ready calculated frequent subgraphs, obtaining the cor-
responding feature vector. Finally, this vector is classi-
fied according to the classification model.

Some state-of-the-art approaches are analyzed and
compared regarding our proposal, using different set-
tings. This paper is organized as follows. The related
works are presented in Section 2. Our approach is intro-
duced in Section 3. The achieved experimental results
using a supervised intrusion detection dataset are shown
in Section 4. In Section 5, the significance and impact
of the proposed framework, as well as its possible ap-
plication in other domains, are analyzed. Finally, the
conclusions and an idea for future work are outlined in
Section 6.

2 Related works

In the last years, some intrusion detection methods are
proposed [20, 21, 22, 25]. In this section, an overview of
these kind of methods is presented, including only those
which were applied on the KDD dataset [4].

A rule-based framework PNrule is proposed by
Agarwal and Joshi [14], where the main idea is to learn
a rule-based model using two sets of rules. The first set
of rules is used to predict the presence of a class. The
other set of rules is used to predict the absence of a class.
Depending on which combination of rules applies, they
predict the record to be in a particular class with certain
score in the interval [0%, 100%]. This score represents
the probability of the record belongs to the target class.

Neural networks can be applied in intrusion de-
tection context [24]. The technique presented by Ah-
mad [19] uses a Principal Component Analysis (PCA)
and genetic algorithm for the feature selection. The
feature set obtained by this process is presented to a
Multilayer Perceptron (MLP) for classification purpose.
In the training phase the weights of the system are up-
dated by carrying out a certain steps. The testing phase
involves two steps: verification step and generalization

step. In the verification step, a trained system is tested
with the data used in training. This step evaluates how
well the trained system has learned the training patterns
in the training dataset. In generalization step, testing is
conducted with data that were not used in training, to
evaluate generalization ability of the trained network.

A multi-classifier model is introduced by Sabhnani
and Serpen [15]. This model is created using most
promising classifiers for a given attack category. The
best algorithms identified for each category were: MLP,
k-means and Gaussian.

An approach based on a hierarchy of self-organizing
feature maps (SOMs) has been proposed by Kayacik et
al. [16]. The training process consists of two stages. The
first step is for the general organization of the SOM
and the second for the fine-tuning of neurons. The
training process is repeated for each SOM comprising
the hierarchy. In this method, the best performance is
achieved using a two-layer SOM hierarchy, based on all
41 features from the KDD dataset.

Revathi and Malathi [26] presents a hybrid system
to reduce the dimensionality of the data and classify
network intrusions. The hybrid system is based on a
technique called Simplified Swarm Optimization (SSO)
for the feature selection and a data mining algorithm
Random Forest as the classifier.

Another method is proposed by Jeya et al. [10],
which consists in a classification method using a dis-
criminant analysis. First, the authors make a feature
selection. Next, the data collection is split into four
subsets, each one containing a specific attack category
and normal connections. Then, a discriminant analy-
sis is applied using SPSS tool [11] on a reduced feature
set. Finally, a classification summary for each category
is presented.

There is an approach based on anomaly detection
using graphs. The method proposed by Noble and
Cook [9] is focused on detecting specific and unusual
substructures within a graph. The idea is representing
the data collection as a graph and splitting it into dis-
tinct subgraphs, determining the anomalous subgraphs
regarding the remaining ones.

There are few studies based on graphs for intrusion
detection [9, 27, 28]. They are commonly focused on de-
tecting anomalies and associate them to intruders. This
fact can lead a poor system performance; since, as it is
discussed in Section 4.2, an intruder is not considered
an anomaly. Moreover, the reduction of data collection
is usually performed only by the selection of features.
Ignoring other details such as data redundancy, which
can affect the efficiency of the system. Our framework
takes into account these details and processes the re-
duced collection using a frequent subgraph mining [1]

Figure 1: Training stage diagram.

algorithm.

3 Proposed method

In this section, the proposed framework for intrusion
detection based on frequent subgraph mining is pre-
sented. Our approach comprises of two stages: training
and classification.

3.1 Training stage. This stage is composed by four
modules: preprocessing, graph mining, representation,
and training (see Figure 1). The preprocessing module
processes the training collection, starting with a feature
selection algorithm. The feature selection is performed
to reduce the dimensionality of the input data. Apply-
ing feature selection we obtain a subset containing the
most representative features according to the outcome
scores. In this way, only the representative features are
used as attributes for classification.

Two selection techniques are used for identifying
the representative feature set. One of these techniques
is Univariate Feature Selection [6], where a statical
test based on analysis of variance (ANOVA) is applied
to each feature individually. The other technique is
support vector machine feature weights (SVM Weight)
with a linear kernel [7], where the normalized feature
weights are used to sort the features according to its
relevance.

Once obtained the scores of both selection methods,

Figure 2: Comparing feature selection algorithms.

they are normalized between [0, 1]. Let smax be
the maximum score of SSVM , for the SVM Weight
algorithm the obtained scores set SSVM is normalized
following the equation (3.1):

NSVM =

{
ni | si ∈ SSVM , ni =

si
smax

}
(3.1)

where NSVM is the normalized set of values for SSVM .
In the same way, the obtained scores set SUV from

the Univariate algorithm is normalized according to the
equation (3.2):

NUV =

{
n′
i | s′i ∈ SUV , n

′
i =

s′i
s′max

}
(3.2)

where NUV is the normalized set of values for SUV

and s′max is the maximum score obtained in SUV .
In Figure 2, normalized scores by the SVM Weight
algorithm and the univariate algorithm are represented
for each feature. Note that the features are shown from
0 to 40, being 41 the number of features in KDD dataset.

For each obtained normalized set (NSVM and NUV)
is computed their scores mean (NSVM and NUV).
Then, a representative feature is that where ni > NSVM

or n′
i > NUV . In this way, two sets of features are

obtained: FSVM set of features from SVM Weight
algorithm and FUV set of features from Univariate
algorithm. Finally, the set of features Ff = FSVM∪FUV

is identified as the most representative set.
Once the features have been selected by the selec-

tion algorithm, new labels for these features are gen-
erated by a relabeling algorithm. This relabeling al-
gorithm assigns a unique numerical label for each non
numerical feature value. Furthermore, using k-means
algorithm [8], the relabeling algorithm creates clusters

for numerical features. Each obtained cluster comprises
a range of numerical values, which are represented by
a unique numerical label. The use of these clusters al-
lows us to cover values that do not exist in the training
dataset and are included in the classification stage.

For example, suppose that the feature f1 takes
the values 0.0, 0.2, 0.3, 0.6, 0.7 and 1.0 in the training
stage, and a cluster c = [0.7, 1.0] is obtained. Then,
in the classification stage, a new transaction in which
the feature f1 takes the value 0.9, where this value not
appear in the training stage; however, it is possible to
represent it using the label assigned to the cluster c.

In order to reduce the values dimensionality of the
numerical features, we seek a small value for k (20 in
our case) that allows us to keep the representativeness of
data. Finally, it is important to note that a restriction
for our clustering method is added (see equation 3.3)

k =

{
|fi| if |fi| < k
n otherwise

(3.3)

where fi is a numerical feature and n is the default
value of k (20 in our case).

The next step is to apply the reduction algorithm.
This algorithm involves removing duplicate transactions
from the relabeled training collection. The reduction
process is performed due to duplicate transactions do
not provide useful information. Notice that a trans-
action is a duplicate transaction if there exist at most
other transaction with the same feature values and class.
This algorithm solves the problem reported by Tavallaee
et al. [29], related to redundant records in the KDD Cup
’99 dataset.

In the graph mining module, the collection obtained
by the reduction algorithm is processed by a graph rep-
resentation algorithm. The purpose of this representa-
tion algorithm is to represents each transaction as a star
graph [9]. In a graphical representation, a star graph has
a core vertex representing the transaction itself and a
vertex for each corresponding feature connected to the
core (see Figure 3). The edge label is the feature index,
and the vertex label is the value of the corresponding
feature.

Here, a method based on identifying frequent item
sets can be used. In case of using this method, a collision
between labels that belong to different features may
appear. This is due to there are no differences between
labels from different features, because they represent the
same value. Thus, we would have to generate different
labels for each feature. Moreover, when the number
of existing features |F | is significantly higher, then a
considerable increment of the number of the generated
labels η could be obtained; since η = |F | · k, where k
represents the number of labels to be obtained for each

Figure 3: Star graph example.

feature.
The graph-based representation allows us to elimi-

nate such collisions. For example, suppose that we have
two features f1 and f2, and both have a label 2, then us-
ing graph-based representation each label has a different
significance; since the edges indicate the corresponding
feature. Next, the obtained graph collection is processed
by the gdFil algorithm [2] for frequent subgraph mining.

Any other graph miner could be used instead of
gdFil. However, gdFil get good execution time regard-
ing gSpan [3] and other graph miners, since it performs
a full complete duplicate candidate pruning [2].

The frequent subgraphs [1] obtained by gdFil al-
gorithm are represented as feature vectors by the fea-
ture vector calculation algorithm. A vector vG =
[g1, g2, . . . , gj] contains elements, where j is given by
the number of frequent subgraphs detected. The value
of each element gl (where l = 1, 2, ..., j) is binary. Thus,
one element gl = 1 indicates that the subgraph repre-
sented by gl is contained in the graph G represented by
vG.

Finally, in the training module, the feature vectors
are processed by a classifier, and a classification model
is obtained.

3.2 Classification stage. This stage (see Figure 4)
contains three modules: preprocessing, pattern identi-
fication and representation. The selected features and
labels obtained during the training stage are used in
the preprocessing module to represent a new unclassi-
fied transaction.

In the patterns identification module, the relabeled
transaction is processed by the same graph representa-
tion algorithm that was used in the training stage; only
this time, the result is a single graph. Next, a pattern
search algorithm is performed. This algorithm contrast
the resulting graph regarding the already calculated fre-
quent subgraphs.

In the representation module, the feature vector cal-
culation algorithm is used. Thus, the identified sub-
graphs by the pattern search algorithm are represented
as the corresponding feature vector of the processed

Figure 4: Classification stage diagram.

graph. Finally, this vector is classified according to the
classification model.

4 Experiment

In this section, the dataset used for evaluating the
proposed framework is analyzed and the classification
results achieved are presented.

4.1 KDD Cup ’99 dataset [4]. This supervised in-
trusion detection dataset is used in our experiment. The
dataset provides connection records generated by a sim-
ulation of a military network. Such dataset contains two
labeled collections: training with 4 898 431 connection
records (transactions) and testing with 311 029 transac-
tions. In the training collection, the number of classes
is 23 (22 different attack types and “normal” label). In
the testing collection, the number of classes is 38 (37 dif-
ferent attack types and “normal” label). In the KDD’99
contest, the attack classes are clustered in the following
four categories.

1. Probe: surveillance and other probing.

2. DoS: denial of service.

3. U2R: unauthorized access to local superuser (root)
privileges.

4. R2L: unauthorized access from a remote machine.

Therefore, it can be seen as a database with samples
of four attack categories, unlike other databases like

the CAIDA “DDoS Attack 2007” dataset [5], which
only has one attack category (DoS). Each transaction
in the KDD’99 dataset contains 41 features describing
it, where these features can be continuous or discrete.

4.2 KDD Cup ’99 dataset processed by others
methods. In this section, the ways of processing the
KDD dataset by some methods are discussed.

In [10], they split the training collection into 4 at-
tack subsets. Each subset is analyzed using a correlation
analysis for identifying the important features for a spe-
cific attack. This analysis result gives a set of features
for each subset. These features are considered as rele-
vant features for each attack. When the data collection
is partitioned into subsets for each attack category and
each subset is analyzed independently. This approach
becomes in a two class categorization problem, instead
of the five classes (Probe, DoS, U2R, R2L).

In [9], it is assumed that an anomaly is an event that
occurs rarely. Therefore, the problem appears when a
collection of data, where attacks are quite common, is
processed. Since when attacks are common, they cannot
be classified as anomaly, affecting the performance of
anomaly detection systems. To solve this problem, they
build new collections using the test collection. In each
new collection, most of the selected transactions (96%-
98%) belong to the “normal” class, while the rest belong
to one attack type.

In the methods [10] and [9], the training and test
collection are split into subsets to adapt them to their
proposal. Each subset is processed independently. Par-
ticularly in [10], they use different sets of features for
each subset. The method proposed in this paper pro-
cesses the complete test collection without partitioning
it, and uses a single set of selected features.

4.3 Experimental results. Experiments were per-
formed on a machine with 4 GB of RAM and a Quad
Core processor at 2.5 GHz. The algorithms are imple-
mented using ANSI-C programming language.

The selected features during the train-
ing process were FUV = {1, 4, 36} and
FSVM = {1, 3, 6, 12, 13, 21, 22}. The final set was
Ff = {1, 3, 4, 6, 12, 13, 21, 22, 36}. Table 1 shows the
selected features, their position in the original transac-
tion (starting with 0), a short description about them
and their type.

A comparison of the features selected by our ap-
proach regarding the features used in other works is
presented in Table 2. For example, our features selected
match with the most relevant features selected by Kay-
acik et al. [13] for some individual classes as is shown in
Table 2.

Table 2: List of features used by our approach and the
approach reported in [13] for specific classes.

Class Relevant Features
normal 36
smurf 1, 4, 22
neptune 3
land 6
back 12
buffer overflow 13
warezclient 21

Table 3: List of features used by our approach and the
approach reported in [12].

Attack category Relevant Features
DoS 3, 4, 12, 22, 36
Probe 3, 4
U2R 1, 4, 12, 13
R2L 4, 21, 22

Another comparison between our selected features
according to the categories and the ones used in [12], is
shown in Table 3.

After relabeling, the training collection represented
with the selected features is processed by the reduction
algorithm. This algorithm allows us to reduce the
amount of transactions from 4 898 431 to 815, being
a reduction over 98%. A meaningful dimensionality
reduction, achieved by our proposal in terms of the
number of transactions for each category, can be seen
in Table 4.

When the gdFil algorithm with δ = 0.4 was per-
formed, the feature vectors obtained in the representa-
tion module, are processed by three different classifiers.
The parameter δ represents the support threshold [2].
The three used classifiers are executed on the Weka plat-
form [23], and they are: J48graft, classification via Re-
gression and SMO. In Table 5, the accuracy achieved by
different approaches over the same KDD’99 test collec-
tion is shown. The classifiers used in our approach are
marked with “ * ”.

The outcomes of each classifier used in the frame-
work have a category where the accuracy is higher than
the other compared methods. Using a J48graft classi-
fier the normal class is very well classified; however, in
the attack categories the expected results are not ob-
tained. When the SMO classifier and the Regression
classifier are used, the maximum accuracy for R2L cat-
egory is obtained, tripling the results reported in most
of the remaining approaches. Instead, in the rest of the
categories the expected results are not obtained.

Table 1: List of the features selected by our proposal.
Id Feature Description Type
1 protocol type Connection protocol (e.g. tcp, udp) Discrete
3 flag Status flag of the connection Discrete
4 source bytes Bytes sent from source to destination Continuous
6 land 1if connection is from/to the same host/port;

0 otherwise
Continuous

12 compromised number of compromised conditions Continuous
13 root shell 1 if root shell is obtained; 0 otherwise Continuous
21 is guest login 1 if the login is a guest login; 0 otherwise Continuous
22 count number of connection to the same host as the

current connection in the past two seconds
Continuous

36 dst host srv diff
host rate

% of connections to the same service coming
from different host

Continuous

Table 4: Comparison between the original training collection and reduced training collection.
Original training collection Reduced training collection

Categories Num. of trans. Percent of total Num. of trans. Percent of total
normal 972781 19,9 % 478 58,7 %
DoS 2883370 79,3 % 116 14,2 %
Probe 41102 0,84 % 156 19,1 %
U2R 52 0,001 % 17 2,08 %
R2L 1126 0,023 % 48 5,89 %

The experimental results show that the proposed
framework, which train with a data collection reduced
by 98%, is able to achieve good results in specific
categories depending on the used classifier.

5 Significance and Impact

Many datasets can be represented by collections of
graphs, which can be classified by the real data struc-
tures. The discovery of frequent patterns, especially the
detection of frequent subgraphs in graph collections, has
boosted its use in many application on different domains
of science. As it was shown in this paper, the transac-
tions generated by network traffic can be represented
as a graph collection. This representation allows apply-
ing the frequent subgraph mining in intrusion detection
tasks and opening a new path for future researches.

For detecting intruders, processing large volumes of
data generated by network traffic is required. In these
cases, the computational performance in terms of time
and storage capacity is affected. Our approach provides
a solution to this problem, including a preprocessing
module, which drastically reduces the dimensionality of
data.

In this paper, the proposed framework is designed
for the intrusion detection. However, it can be extended
for the fraud detection domain in areas where the data

can be represented as graphs, such as: in telecommu-
nications, banks, online auctions, among others. Ob-
serving the results obtained by our framework using
J48graft, in the categorization problem on KDD Cup
’99 with five classes; the 99.9% of transactions in the
normal class were correctly classified. In the fraud de-
tection, which usually consists of a two classes (fraud,
not fraud) categorization problems, could be obtained
encouraging results.

6 Conclusion

There are a wide variety of techniques proposed for in-
trusion detection based on different approaches, which
were analyzed in this paper. Some of these techniques,
in the best scenario, use the feature selection for re-
ducing the dimensionality of the data. Our proposal
includes an initial step, which is very important to deal
with large volumes of data. The preprocessing module
drastically reduces the training collection, without los-
ing useful information. To achieve this reduction, three
specific algorithms are used: the feature selection algo-
rithm, relabeling algorithm and reduction algorithm.

Using the training collection as a matrix, where
rows are transactions and columns represent features,
a matrix of 4 898 431 rows and 41 columns is initially
given. After being processed by our framework, the

Table 5: Accuracy achieved by different approaches on the entire “corrected” test collection.
Approach normal Probe DoS U2R R2L
*J48graft 99,9 % 43,73 % 71,41 % 0 % 0 %
*Regression 55,09 % 51,44 % 71,44 % 4,39 % 27,7 %
*SMO 54,97 % 53,29 % 71,6 % 3,95 % 28,2 %
KDD ’99 winner [17] 99,5 % 83,3 % 97,1 % 13,2 % 8,4 %
KDD ’99 runner-up [18] 99,4 % 84,5 % 97,5 % 11,5 % 7,3 %
PNrule [14] 99,5 % 73,2 % 96,9 % 6,6 % 10,7 %
SOM [16] 98,6 % 81,3 % 96,9 % 0 % 1,1 %
Multi-Classif. [15] - 88,7 % 97,3 % 29,8 % 9,6 %

result was a matrix of 816 rows and 9 columns. This
result makes it possible to reduce the execution time
required for training, as well as the noise generated
by features and transactions that do not provide useful
information.

After analyzing the behavior of our method on a
five class categorization problem, we plan to apply it
to a binary categorization problem. The domain of
fraud detection turns out to be a good candidate to
test our method, where transactions would be classified
in fraudulent or legitimate.

References

[1] J. Huan, W. Wang, and J. Prins. Efficient mining of
frequent subgraphs in the presence of isomorphism, In
proceedings of the Third IEEE International Confer-
ence on Data Mining, pp. 549–552, Washington, DC,
USA, 2003.

[2] A. Gago-Alonso, J. A. Carrasco-Ochoa, J. E. Medina-
Pagola, and J. F. Martnez-Trinidad. Full Dupli-
cate Candidate Pruning for Frequent Connected Sub-
graph Mining, Integrated Computer-Aided Engineer-
ing, 17(3):pp. 211–225, 2010.

[3] X. Yan and J. Han. gSpan: Graph-Based Substructure
Pattern Mining, In Proceedings of the 2002 Interna-
tional Conference on Data Mining (ICDM’02), pp. 721–
724, Maebashi, Japan, 2002.

[4] KDD Cup 1999 Computer network intrusion detection.
[Online]. Available: http://sigkdd.org/kdd-cup-1999-
computer-network-intrusion-detection.

[5] The CAIDA UCSD “DDoS Attack
2007” Dataset. [Online]. Available:
http://www.caida.org/data/passive/ddos-
20070804 dataset.xml

[6] Univariate feature selection. [On-
line]. Available: http://scikit-
learn.org/stable/modules/feature selection.html#univ
ariate-feature-selection.

[7] Yin-Wen Chang and Chih-Jen Lin. Feature Ranking
Using Linear SVM. JMLR: Workshop and Conference
Proceed, 3:pp. 53–64, 2008.

[8] J. A. Hartigan and M. A. Wong. Algorithm AS 136:
A K-means clustering algorithm. Applied Statistics,
Royal Statistical Society, pp. 100–108, 1979.

[9] C. C. Noble and D. J. Cook. Graph-based anomaly
detection. In proceedings of the 9th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pp. 631–636, Washington, DC, USA,
2003.ACM.

[10] P. G. Jeya, M. Ravichandran and C. S. Ravichan-
dran. Efficient Classifier for R2L and U2R Attacks.
International Journal of Computer Applications ,
45(21):pp. 28–32, Washington, DC, USA, 2012.

[11] SPSS 13.0 Base User’s Guide. [Online]. Available:
http://sscnet.ucla.edu/labs/SPSS13/SPSSBaseUsersG
uide13.0.pdf.

[12] S. O. Al-mamory and F. S. Jassim. Evaluation
of Different Data Mining Algorithms with KDD
CUP 99 Data Set. Journal of Babylon University,
21(8):pp. 2663–2681, 2013.

[13] H. G. Kayacik, A. N. Zincir-Heywood and M. I. Hey-
wood. Selecting Features for Intrusion Detection: A
Feature Relevance Analysis on KDD 99 Intrusion De-
tection Datasets. In proceedings of the third annual
conference on privacy, security and trust, 2005.

[14] R. Agarwal and M. V. Joshi. PNrule: A New Frame-
work for Learning Classifier Models in Data Mining.
Technical report, Department of Computer Science,
University of Minnesota, USA, 2000.

[15] M. Sabhnani and G. Serpen. Application of Ma-
chine Learning Algorithms to KDD Intrusion Detection
Dataset within Misuse Detection Context, In MLMTA,
pp. 209–215, 2003.

[16] H. G. Kayacik, A. N. Zincir-Heywood and M. I. Hey-
wood. A hierarchical SOM-based intrusion detection
system. Engineering Applications of Artificial Intelli-
gence, 20(4):pp. 439–451, 2007.

[17] B. Pfahringer. Winning the FDD99 classification
cup: bagged- boosting. SIGKDD Explorations, ACM
SIGKDD, 1(2):pp. 65-66, 2000.

[18] I. Levin. KDD-99 Classifier Learning Contest. LL-
Softs Reslts Overview, SIGKDD Explorations, ACM
SIGKDD, 1(2):pp. 67-75, 2000.

[19] I. Ahmad. Enhancing MLP Performance in Intrusion
Detection using Optimal Feature Subset Selection based

on Genetic Principal Components. International Jour-
nal of Applied Mathematics & Information Sciences,
8(2):pp. 639–649, 2014.

[20] A. Srivastav, P. Kumar, R. Goel. Evaluation of Net-
work Intrusion Detection System using PCA and NBA.
International Journal of Advanced Research in Com-
puter Engineering & Technology, 2(11):pp. 2873–2881,
2013.

[21] L. Xiao, Y. Chen, and C. K. Chang. Bayesian Model
Averaging of Bayesian Network Classifiers for Intru-
sion Detection. In Computer Software and Applications
Conference Workshops (COMPSACW), 2014 IEEE
38th International, pp. 128–133, 2014.IEEE.

[22] P. Amudha, S. Karthik and S. Sivakumari. Clas-
sification Techniques for Intrusion Detection An
Overview. International Journal of Computer Applica-
tions, 76(16):pp. 33–40, 2013.

[23] Weka 3: Data Mining Software in Java. [Online].
Available: http://cs.waikato.ac.nz/ml/weka/

[24] G. Liu, Z. Yi and S. Yang. A hierarchical intrusion de-
tection model based on the PCA neural networks. Neu-
rocomputing, Advances in Computational Intelligence
and Learning, 14th European Symposium on Artificial
Neural Networks, 70:pp. 1561–1568, 2006.

[25] R. Singh and D. Singh. A Review of Network Intru-
sion Detection System Based on KDD Dataset. In-
ternational Journal of Engineering and Technoscience,
5(1):pp. 10–15, 2014.

[26] S. Revathi and A. Malathi. Network Intrusion Detec-
tion Using Hybrid Simplified Swarm Optimization and
Random Forest Algorithm on Nsl-Kdd Dataset. Inter-
national Journal of Engineering and Computer Science,
3(2):pp. 3873–3876, 2014.

[27] J. Tölle and O. Niggemann. Supporting intrusion de-
tection by graph clustering and graph drawing. In Pro-
ceedings of 3rd International Workshop on Recent Ad-
vances in Intrusion Detection RAID, 2000.

[28] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger,
J. Frank, J. Hoagland, K. Levitt, C. Wee, R. Yip
and D. Zerkle. GrIDS-a graph based intrusion detection
system for large networks. In Proceedings of the 19th
National Information Systems Security Conference,
1:pp. 361–370, 1996.

[29] M. Tavallaee, E. Bagheri, W. Lu and A. A. Ghorbani.
A detailed analysis of the KDD CUP 99 data set.
In Proceedings of the Second IEEE Symposium on
Computational Intelligence for Security and Defence
Applications, 2009.

