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This article introduces a novel approach for building heterogeneous ensembles based
on genetic programming (GP). Ensemble learning is a paradigm that aims at combin-
ing individual classifiers outputs to improve their performance. Commonly, classifiers
outputs are combined by a weighted sum or a voting strategy. However, linear fusion
functions may not effectively exploit individual models’ redundancy and diversity. In
this research, a GP based approach to learn fusion functions that combine classifiers
outputs is proposed. Heterogeneous ensembles are aimed in this study, these models
use individual classifiers which are based on different principles (e.g., decision trees and
similarity-based techniques). A detailed empirical assessment is carried out to validate
the effectiveness of the proposed approach. Results show that the proposed method
is successful at building very effective classification models, outperforming alternative
ensemble methodologies. The proposed ensemble technique is also applied to fuse ho-
mogeneous models’ outputs with results also showing its effectiveness. Therefore, an in
deep analysis from different perspectives of the proposed strategy to build ensembles is
presented with a strong experimental support.

Keywords: Pattern classification; heterogeneous ensembles; genetic programming.

1. Introduction

Ensemble learning has been a widely investigated paradigm within computational

intelligence and machine learning6,26. Ensembles ability has been demonstrated

when applied to different machine learning challenges such as pattern classification6,

feature selection21, and data clustering22 among others. In pattern classification an

ensemble consists on combining several classifiers in order to overcome individual

drawbacks, such as low accuracy and high sensitivity to noisy data. Ensembles

follow the idea of interaction among several prediction models to take advantage

of individual performances and to avoid error propagation. However, combining

several classifiers outputs does not guarantee that the best individual classifier is

outperformed; although the probability of not selecting the worst individual classi-

fier increases.
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A rough ensembles classification divides them in homogeneous and heteroge-

neous. Homogeneous ensembles combine several instances of the same predictor

under different parameters configurations or using different instances/features11,4.

In contrast, heterogeneous ensembles merge the outputs of individual learners from

different nature to build a composed classification model23,27. Both kinds of en-

sembles are normally built following a weighting scheme or a voting strategy which

combine classifiers outputs to merge individual decision models. These combination

strategies lead to linearly constrained models that possibly are not the best option

for ensemble building.

Three main aspects are considered when building ensembles: the selection of

training data for individual predictors, the process to obtain ensemble members,

and the mechanism to combine individual classifiers26. This research focuses on ex-

ploring evolutionary computation as the mechanism to combine individual learners.

In particular, Genetic Programming (GP) is used to learn a function that combines

the predictions of individual classifiers. The underlying hypothesis is that voting

or weighted-sum combination strategies may not fully exploit the redundancy and

complementarity of individual classifiers. Learning a fusion strategy via GP leads

to possibly non-linear combination mechanisms that could better exploit the out-

puts of multiple predictors. Thus, complex decision spaces can be targeted while

exploiting implicit individual model’s characteristics such as diversity3. The pro-

posed technique focuses on heterogeneous ensembles, as it can automatically deal

with different scales of classifiers’ outputs. Nevertheless it can also be applied for

combining predictions of homogeneous models. Experimental results in forty clas-

sification problems show the validity of the proposed method for building heteroge-

neous and homogeneous ensembles. In fact, ensembles generated with the proposed

mechanism outperform traditional fusion techniques.

The proposed approach was first introduced by Escalante et al.7, where impor-

tant improvements were achieved by applying GP for ensembles construction on an

object recognition data set. This study extends previous research by performing an

extensive and comprehensive experimental assessment of the proposed method in a

suite of benchmark pattern classification problems. Additionally, an in deep anal-

ysis of the solutions generated by the proposed method and its performance under

different settings (including homogeneous ensembles and cross-domain ensemble

learning) is reported.

This article is organized as follows. In Section 2 related work on ensemble learn-

ing with evolutionary algorithms is reported. Next, in Section 3 the approach for

learning a fusion mechanism for ensemble generation is presented. In Section 4 ex-

perimental results that validate the efficacy of the proposed method are reported

and analyzed. Finally, in Section 5 conclusions derived from this work and future

work are drawn.
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2. Related work

Evolutionary and other bio-inspired algorithmic techniques have been applied to

classification in general, among them GP has been successfully used at different

stages including pre-processing and post-processing tasks that aim at improving

prediction model performance10. GP is the most recent evolutionary technique with

one main characteristic: to allow complex representation structures, such as trees16.

Although building a prediction model from a data set is the main aim in classifica-

tion, this research focuses on the post-processing stage: to assemble several classifier

models via GP in order to improve individual learners performances. Due to the

non-deterministic nature of GP, complex solutions can be evolved while taking ad-

vantage of GP’s representation flexibility which allows combining operators and

functions from non-linear domains.

Both, homogeneous and heterogeneous ensembles, have been built by applying

evolutionary and other bio-inspired techniques5,15,18,19,25. Finding the best feature-

classifier combinations to build an ensemble is approached by Park et al. using a

standard genetic algorithm in order to determine an optimal prediction model for

lymphoma cancer classification of DNA sequences. The idea was to stochastically

search for feature-classifier pairs that provide the best performance to build an

ensemble through linear combination19.

A difficult pharmaceutical problem was tackled by Langdon et al., in which de-

cision trees and neural networks are combined as base learners in order to improve

individual performances15. Results show that similar performance to a neural net-

work is achieved by combining poor individual learners through GP. This research

shows the advantages of implicit GP’s flexibility in terms of solutions representation

and the combination mechanism of individual predictors.

Other evolutionary techniques have also been applied to build ensembles. Yang

et. al. used Particle Swarm Optimization (PSO) algorithm to build ensembles fol-

lowing a weighting scheme25. Positive results were achieved while tackling several

real problems. It was observed that removing the weakest learner leads to a better

overall performance. Three multiple-classifiers systems using PSO were presented

by Macas et. al.18. Also, linear combination strategies were targeted and results

showed accuracy improvement for the proposed approaches when compared to other

heuristics. On a wider scope, PSO has been applied to the ensemble model selection

problem9. Heterogeneous classifiers with optimized parameters are identified and

selected for generating an ensemble.

A multi-objective approach using GP to evolve ensembles for classification of

unbalanced data was presented by Bhowan et. al.2. The proposed approach is com-

pared to a canonical GP classification system and two other standard classifiers.

On an initial stage the competing objectives are each model’s accuracy on major-

ity and minority classes. On a second stage, a diversity measure is introduced as

a third objective. Results showed an improved performance of the multi-objective

approach when dealing with highly unbalanced data. An extension to this work ap-
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plied multi-objective GP as a first step to then re-apply GP to solutions associated

to the Pareto front1. Selective pressure is controlled by limiting the trees depth in

order to promote the grouping of cooperative learners. Therefore, accurate, diverse

and small ensembles are evolved.

Diversity among ensemble members has been considered as a factor that directly

affects model’s accuracy but a scientific explanation has not been determined13.

Kuncheva et. al. studied this relationship through ten diversity measures among

binary classifiers14. After an exhaustive experimental assessment, results show that

both concepts are related depending on specific circumstances. Therefore, a strict

link between diversity and ensemble’s accuracy does not always exist. Bian et. al.

carried out a study on diversity in homogeneous and heterogeneous ensembles3.

The same diversity measures were assessed on 15 data sets, results led to group

similar diversity measures however conclusive remarks were not raised.

Oliveira et. al. used a multi-objective genetic algorithm to investigate the ac-

curacy/diversity dilemma on heterogeneous ensembles5. These two concepts were

set as objectives and were evaluated together and separately. Results showed an

improved performance when considering both metrics. Although three different

classifiers (KNN, decision tree, SVM) were used as base predictors, a total of 30

built the ensemble, 10 per type were included. Yet, normalization problem among

predictors is an issue not explicitly dealt with.

In this research several classifiers of different nature are fused through a stochas-

tic technique and complex, yet effective, models (possibly non-linear ones) are cre-

ated. In the proposed approach the diversity challenge is targeted in an implicit

way through the evolutionary process and supported by an exhaustive empirical

assessment. Schemes guided by weighting or majority voting strategies can be rep-

resented by the solutions in the genetic program. Another distinctive feature of the

proposed ensemble mechanism is that the normalization problem is automatically

approached. The evolutionary mechanism works out a prediction model from the

combination of individual learners independently of their scale.

Most existing methods for building ensembles use summing, weighting sums or

voting strategies. The proposed technique to combine classifiers outputs could out-

perform those techniques by building better ensembles that explicitly learned the

fusion function of individual predictors. Moreover, once a fusion strategy has been

learned, it could be applied in combination with most reviewed works for build-

ing ensembles. The proposed approach can be considered an instance of stacked

generalization as introduced by Wolpert, where a modeling problem is serially ap-

proached in two levels: outputs of individual classifiers are feed to another classifier

that determines the labels for objects24. However, Wolpert’s stacked generalization

is a generic framework under which many models fall, in fact, any ensemble can be

considered an instance of stacked generalization.
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3. Evolving ensembles through GP

Genetic programming16 is an evolutionary technique which algorithmic structure

follows the reproductive cycle of other evolutionary algorithms such as Genetic

Algorithms (GA): an initial population is created randomly or by a pre-defined

criterion, after that individuals are selected, recombined, mutated and then placed

back into the solutions pool. GP uses different solutions representation which is

normally more complex than other evolutionary techniques. For ensembles building,

the advantages of working with a non-deterministic search technique are: possibility

to explore difficult search spaces created by the combination of individual prediction

models through arithmetic operators, automatic weighting mechanism by including

constants affecting individual models, implicit ability to deal with normalization

problems, among others. The rest of this section describes in detail the proposed

GP approach to build ensembles; a general diagram of the proposed mechanism is

shown in Figure 1.

Genetic program

Feature vectors
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0.1 0 0.7 0.8 1

1 1 0 0.6 0.9 0

……….

Representation
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Fusion function
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results

Fig. 1. GP ensemble: General scheme.

3.1. Problem definition

Consider a data set D = (xi, yi){1,...,N} with N pairs of instances (xi) and labels

(yi) associated to a supervised classification problem. Assume that xi ∈ R
d and

yi ∈ {−1, 1}, is a binary classification problem with numeric attributes; and con-

sider gk(xi) ∈ [−1, 1] as the classifier output gk for instance xi. gk represents the

predictor’s confidence value for xi class. Every gk term can be modeled as a func-

tion gk : Rd → [−1, 1], where the predicted class for xi, defined by ŷi, is obtained

as follows: ŷi = sign(gk(xi)).

A fusion function f(g1(xi), . . . , gL(xi)) is defined for combining L classifiers

outputs g{1,...,L}(xi) for instance xi:

f(g1(xi), . . . , gL(xi)) =
1

L

L
∑

k=1

wk · gk(xi) (1)

where wk is the k classifier’s associated weight. For example, in Adaboost11 wk is
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iteratively obtained and is related to gk performance considered as a weak learner.

In random forest4 and other ensembles wk is a constant equals to one4. In majority

voting strategies20, wk = 1 and gk(xi) is replaced by sign(gk(xi)).

Analogously, a fusion function for multi-class problems can be defined as follows:

fm(h1(xi), . . . ,hL(xi)) =
1

L

L
∑

k=1

wk · hk(xi) (2)

where hk(xi) is the output of the k
th individual multi-class classifier. Assuming

a multi-class classification problem with Q−classes: C1, . . . , CQ, a vector indicating

classifier confidence per class, hk(xi) = 〈h1
k(xi), . . . , h

Q
k (xi)〉, is provided by each in-

dividual learner k, see Figure 2. In heterogeneous ensembles, every estimate hj
k(xi),

is obtained by predictors of different nature, for example, h1
k(xi) determines class

1 confidence for xi instance according to a KNN classifier (kth classifier); h1
j(xi)

defines class 1 confidence for the same instance according to random forest ( jth

classifier), etc. On the other hand, in homogeneous ensembles confidence vectors

come from the same classifier but each prediction model has been trained over

different data set partitions or has been configured with different parameters.

A general one-vs-rest methodology is applied using every classifier to obtain

multi-class confidence vectors, see Figure 2. In one-vs-rest classification, a binary

classifier is trained per class where the jth− classifier uses as positive the training

examples from class j and as negative the rest. In this case, hj
k(xi) is the k

th binary

classifier confidence for instance xi on label Cj .

The main objective of this research is to determine f∗
m, the fusion function that

maximizes the classification performance on unseen data. A genetic program is thus

applied to search the functions space which is determined by a pre-defined set of

arithmetic operators, constants and classifiers outputs.

3.2. Genetic program specifications

Genetic Programming differs from other evolutionary techniques on its solutions

representation. Normally, GP uses trees as data structures, in this research pre-

diction models outputs are represented by leaf nodes. Additionally, constant val-

ues, to simulate weighting factors, are also represented by leaf nodes. Non-leaf or

internal nodes are a set of arithmetic operators +,−,×,÷ and single arity op-

erators 2,
√
, log10. These operators were chosen for being commonly used in GP

and because they allow representing non-linear models. Although, it is not possible

to guarantee that the chosen operators are necessary and sufficient; it is at least

guaranteed that traditional ensembles would be built (by considering addition and

product). Figure 2 shows a tree example of an individual which encodes a fusion

function that dictates how classifiers outputs are combined in an ensemble.

A centralized population has been used considering as the stopping condition

a maximum number of generations. Standard mutation and crossover have been



May 15, 2014 16:8 IJPRAI format

Learning to Assemble Classifiers via Genetic Programming 7

applied16. Mutation randomly exchanges a node by a randomly created sub-tree.

Crossover randomly exchanges sub-tree structures belonging to selected parents.

Roulette-wheel is used as the selection mechanism and the whole population is

replaced by the offspring every generation.

Fig. 2. Individual sample and data flow to combine classifiers outputs considering a 3-class/4-
instances problem and 3-classifiers. On the left, a matrix per classifier (k), where i, j entry indicates
classifier confidence for instance i with correct class j (i.e., hj

k
(xi)). The last column per matrix

shows the actual instances prediction (argmax across rows) using the corresponding matrix. GP’s
solution sample combines multiple models outputs and returns a fusion function (f∗

m) which
produces an output matrix.

The whole GP procedure is described next: a set of classifiers outputs

((h1(xi), . . . ,hL(xi))) are the GP inputs for a training data set D. An instance

in D is classified via 10-fold cross-validation for every learner. These results are the

GP inputs which means that for every instance and classifier there is an associ-

ated value obtained for that instance belonging to the test partition. In this way,

overfitting is avoided as much as possible. The GP evolves and returns the fusion

function (f∗
m) that achieves the best fitness during the optimization process. Then,

f∗
m is evaluated on unseen test data, see Figures 1 and 2.

The fitness value of every solution fm is calculated by evaluating its correspond-

ing function’s performance: 1) the predicted class per instance xi is determined

as follows: ŷi = argmaxQ fm(h1(xi), . . . ,hL(xi)), which is the class index with

maximum confidence; 2) fm predictive performance is assessed through standard

measures to determine its fitness. Two performance metrics are assessed as objec-

tives for optimization: accuracy and f1-measure. Accuracy relates to the percentage

of instances correctly classified by the evolved ensemble. While f1-measure is the

harmonic average between precision ( TP
TP+FP

) and recall ( TP
TP+FN

) per class. The

average across classes is reported (also called, macro-average), this way of estimat-

ing the f1-measure is known to be particularly useful when tackling unbalanced

data sets.
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4. Experiments and results

In this section results of extensive experimentation are reported in order to show the

effectiveness and usefulness of the proposed method. Experiments include an eval-

uation of the proposed ensemble generation mechanism based on GP in benchmark

data; a comparison between the proposed method and baseline ensembles; a perfor-

mance assessment of the proposed method for generating homogeneous ensembles;

and an analysis of the generalization capabilities of the learned fusion functions.

4.1. Experimental settings

The following classifiers were considered for building ensembles via GP: random

forest, SVM (Support Vector Machine), klogistic, linear-kridge, non-linear kridge,

1NN (Nearest Neighbor), 3NN, näıve Bayes, gkridge, and neural network. These

classifiers were taken from the CLOP toolbox comprising a variety of methodologies

that have been widely used to build ensembles9,7.

The proposed technique has been assessed through 40 data sets from the UCI

repository plus the SCEFa data set. The latter is associated to an object recognition

problem and has been previously evaluated on building heterogeneous ensembles9.

Table 1. Experimental data sets characteristics.

Data set Instances Attributes Classes Data set Instances Attributes Classes

SCEF 6244 737 10

Australian 690 14 2 Phoneme 5404 5 2
Balance 625 4 3 Pima 768 8 2
Banana 5300 2 2 Ring 7400 20 2
Bands 539 19 2 Saheart 462 9 2
Breast 286 9 2 Satimage 6435 36 7
Bupa 345 6 2 Segment 2310 19 7
Car 1728 6 4 Sonar 208 60 2

Chess 3196 36 2 Spambase 4597 55 2
Contraceptive 1473 9 3 Spectfheart 267 44 2

Crx 125 15 2 Splice 3190 60 3
Flare-Solar 1066 9 2 Tae 151 5 3

German 1000 20 2 Texture 5500 40 11

Haberman 306 3 2 Thyroid 7200 21 3
Heart 270 13 2 Tic-tac-toe 958 9 2

Hepatitis 155 19 2 Titanic 2201 3 2
Housevotes 435 16 2 Twonorm 7400 20 2

Iris 150 4 3 Vehicle 846 18 4
Led7digit 500 7 10 Vowel 990 13 11

Mammographic 961 5 2 Wine 178 13 3
Monks 432 6 2 Wisconsin 683 9 2

In every experimental sample, data sets are divided in training and testing par-

titions. Training partitions are used to learn a fusion function and testing partitions

are used to assess the built ensemble. In particular, the SCEF data set was parti-

tion as follows: 3, 615 testing and 2, 629 training instances. Random partitioning was

applied to the rest of databases considering 70% for training and 30% for testing.

Table 1 shows data sets characteristics.

Three GP configurations have been defined for the experimental assessment:

ahttp://mklab.iti.gr/project/scef
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GPE (Genetic Programming Ensemble) applies the full operators set, GPE-a (Ge-

netic Programming Ensemble by addition) applies only the addition operator simu-

lating the standard approach to learn weights and select ensemble members19,18,25;

and AVE (Average Voting Ensemble) builds ensembles by a voting strategy, i.e. the

fusion function from Equation (2) with wk = 1. Moreover, every configuration is

also tested when using only the top-5 models with better performance on training

data; aiming to determine the accuracy effect of classifiers assembled via GP.

The processing hardware platform to carry out the experiments was a 64−bit

Intel(R) Core(TM) i7−3820 @3.60GHz, 64GB memory. At high level, Matlab 2013a

and GPLab v3 toolbox were used.

4.2. SCEF experimental results

This section analyzes results obtained by the proposed ensemble generation mech-

anism for SCEF. This data set is considered as representative because it is among

the largest ones in terms of instances and attributes. Preliminary results on the

SCEF data set were carried out considering a population size of 50 individual and

a stopping condition of 100 generations, 10 experimental samples were executed7 .

Table 2 shows individual classifiers performance in terms of accuracy and f1-

measure. Random forest (RF) significantly outperforms other classifiers. It is ex-

pected that the proposed approach improves RF’s performance.

Table 2. Results (%) obtained by individual classifiers in terms of accuracy/f1 measure over SCEF
data set.

RF SVM Klogistic Kridge-l Kridge-n 1NN 3NN N.Bayes Gkridge Neural N

Acc. 90.70 55.10 70.60 13.64 74.70 69.30 69.10 26.50 20.60 55.80
f1 79.30 49.90 62.80 2.400 63.10 60.10 57.40 21.60 3.421 37.70

In Table 3, performance metrics average and standard deviation after 10 runs

obtained by the three GP ensemble variants are presented. The proposed ensemble

variants outperform significantly the raw-fusion function (AVE) in terms of both

measures with differences between 40−50%. GP-ensembles even outperformed AVE

when using the top-5 models. This shows the limitations of the raw fusion function

for heterogeneous ensembles.

Table 3. Results (%) obtained by different strategies over SCEF data set when optimizing accuracy
(top) and f1 (bottom). AVE: raw fusion; GPE-a: GP uses only sums; GPE: proposed GP.

AVE AVE-Top5 GPE-a GPE-a-Top5 GPE GPE-Top5
Acc. 31.50 81.40 90.80(0.001) 91.10(0.002) 92.30(0.002) 91.20(0.001)
f1. 27.2 71.90 80.40(0.001) 80.40(0.001) 85.30(0.003) 80.55(0.003)

All GP ensembles outperformed the best individual classifier. The improvement
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for both performance metrics was small for all methods but for GPE. Improvements

of more than 1.5% and 6% were obtained by GPE with respect to the best individ-

ual classifier, in terms of accuracy and f1, respectively. GPE was able to find very

effective fusion functions for heterogeneous classifiers, even when most models per-

formance was low. Moreover, a 6% improvement in f1 is significant when persists

across classes, because it focuses on the average performance over classes.

The best results were obtained by the GPE ensemble, i.e., using all operators

and classifiers. Using more operators in the GP might allow to obtain better fu-

sion functions. Moreover, the GP has more selection options because it used all

classifiers, which explains the improvement over GPE-Top 5.

The best result in Table 3 improved by more than 10% previously reported accu-

racy for the same data set (81.49%)9. Escalante et al. did not optimize the decision

threshold thus the ROC curve area (AUC) is also reported9. Comparing the best

individual AUC (98.44) with the best result reported in9 (94.05), an improvement

of more than 4% is still achieved. These results, to the best of our knowledge, are

the best ones so far reported for the SCEF data set.

4.3. Benchmarking results

This section reports the assessment of the proposed ensemble mechanism consid-

ering forty data sets from the UCI repository (see Table 1). The objective of this

experimental evaluation is to analyze the behavior of the proposed technique on

benchmark data presenting a wide variety in terms of number of: instances, fea-

tures and classes. Considering previous experimental results7, a population size of

100 individuals evolving up to 100 generations as standard settings are defined.

Figures 3 and 4 show performance differences, in terms of accuracy and f1-

measure respectively, for every ensemble method with respect to the best indi-

vidual classifier per data set (i.e., ensemble performance minus best-classifier per-

formance). Values above zero indicate significant improvements over the best in-

dividual model. These results are the average over 10 runs per data set. From

these figures, it is observed that best results were obtained by the GPE ensemble.

Specifically, GPE best performances were achieved for “Wisconsin”, “Twonorm”,

“Housevotes” and “Spambase”. Using a raw fusion ensemble (AVE) showed to be

the worst approach in all cases; and applying a GP ensemble (GPE-a) based on

additions had a similar performance when compared against the best individual

classifier in most cases.

Table 4. Average and standard deviation performances for B-Classifier: best classifier; AVE: raw
fusion; GPE-a: GP using only sums; GPE: proposed GP.

B-Classifier AVE GPE-a GPE
Acc. 61.01(25.18)(1,0,−) 40.23(27.91)(−,−,−) 62.68(24.45)(0,1,−) 85.75(12.21)(1,1,1)
f1. 63.50(26.32)(1,0,−) 31.06(29.00)(−,−,−) 62.91(26.71)(0,1,−) 84.49(14.94)(1,1,1)
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Fig. 3. Accuracy differences between the best individual classifier and the ensembles.
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Fig. 4. f1-measure differences the best individual classifier and the ensembles.

In order to validate the experimental assessment reported in this article, a sta-

tistical analysis is carried out. Results in Figures 3 and 4 were statistically analyzed

using t-test over 10 runs per data set. T-test results show that the proposed tech-

nique GPE significantly improves AVE in all data sets. Also, GPE outperforms

GPE-a in 31 out of 40 data sets. There is no statistical difference for accuracy be-

tween GPE and GPE-a for iris, led7digit, texture, vowel and wine data sets. On the

other hand, f1-measure for GPE and GPE-a is not significantly different for car,

flare-solar, iris, segment, tae, vowel and wine data sets.

Table 4 presents average and standard deviation results for all experimental data

sets obtained by ensemble methods. The best average results are obtained by GPE

together with the lowest standard deviation being the most robust approach. Next

to each performance metric, statistical tests using t-test are included in parenthesis.

For example, accuracy for GPE-a indicates (0,1,-) which means: statistical similarity
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to the best individual learner, statistical significant difference as regards AVE and

statistical significant deterioration with respect to GPE.

4.4. Comparing to other ensemble methodologies

This section carries out a comparison among ensembles evolved by the proposed

mechanism and alternative techniques. The following ensembles were considered:

random forest4: a bagging method using decision trees; adaboost11 a boosting

method using SVMs; logitboost17 a boosting method using regression trees. These

ensemble methods have proved to be very effective in many applications and even

in academic challenges11,4,12,9. Table 5 shows average and standard deviation per-

formances of these methods over all data sets.

Table 5. Average and standard deviation performances for RF: random forest; AVE: raw fusion;
GPE-a: GP using only sums; GPE: proposed GP.

RF Adaboost Logitboost AVE GPE-a GPE
Acc. 40.95(36.17) 41.69(32.82) 37.64(28.04) 40.23(27.91) 62.68(24.45) 85.75(12.21)
f1. 38.64(35.59) 40.30(31.70) 32.67(25.95) 31.06(29.00) 62.91(26.71) 84.49(14.94)

In addition, a statistical test (t-test) is performed over the results shown in Ta-

ble 5 to obtain a comparison of GPE, GPE-a and AVE regarding RF, Adaboost

and Logitboost. The results of this statistical test show that GPE and GPE-a are

better options than RF, Adaboost and Logitboost, while AVE is the worst option.

These statistical results and the values in Table 5 show that the proposed method

significantly outperforms the three baseline ensembles. These alternative ensemble

methods performed poorly, achieving similar results than AVE. In fact, GPE ob-

tained more than twice the performance of the baseline classifiers. One should note

that outputs of each alternative ensemble could be considered as another classifier

in the proposed fusion mechanism. In fact, random forest outputs are considered in

the proposed ensemble mechanism.

4.5. Fusion functions generalization

In this section the generalization performance of the learned functions is evaluated.

For this experiment, a fusion function learned through GP for each data set is

selected and assessed in the other 39 data sets. Hence, a total of 40 fusion functions

(each learned for a different data set) were used to combine classifiers outputs to

test in all data sets. Figure 5 shows the results matrix, where i, j entry indicates the

fusion function’s classification performance learned for data set i and evaluated in

data set j; where red zones indicate high performance and blue zones are associated

with low performance.

From Figure 5 it can be seen that better performance was obtained by functions

learned and evaluated in the same data set, see diagonal elements, this is a somewhat
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Fig. 5. Functions classification performance (rows) learned for different data sets and evaluated in
all data sets (columns). Results correspond to accuracy (left plot) and f1 measure (right plot).

expected result. However, it is interesting that there are clearly distinguishable

column-wise and row-wise red/blue zones. Row-wise red (resp. blue) zones indicate

fusion functions with high (resp. low) generalization capabilities. Column-wise red

(resp. blue) zones indicate easy (resp. difficult) data sets for which most (resp. a

few) fusion functions were effective. There are more red-zones than blue ones, thus

assessed fusion functions are somewhat generalizable and can be applied to other

data sets different to the one they were learned for. However, it is desirable to use

a fusion function learned for each specific data set.

Table 6 presents a summary of the main results from this experiment. It can

be seen that when using the same data set for learning the function and evalua-

tion (row 2) very competitive performance can be obtained. However, if the best

fusion function for each data set is selected the performance would be very close

to 100% (row 4). This means that for some data sets, better results were obtained

with functions learned from different data sets. The average performance across

all data sets is low (row 3), however, the learned functions still have interesting

generalization properties. For example, row 5 in Table 6 shows the average number

of data sets in which fusion functions outperformed the best individual classifier

(row 1). Clearly, each function was helpful in more than 17 and 15 data sets, when

optimizing accuracy and f1 measure, respectively.

Table 6. Evaluation summary of performance generalization from fusion functions.

ID Measure Accuracy f-measure
1 Perf. Best classifier 59.70 62.12
2 Perf. when using the ad-hoc weight 87.35 86.87
3 Avg. performance overall data sets 48.81 43.51
4 Maximum performance 97.08 97.47
5 Avg. number of improved data sets 17.22 15.22
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4.6. In deep solutions analysis

In this section different aspects of the evolved fusion functions are analyzed. The

aim is to gain an insight into the type of functions that can be learned with the

proposed approach.

Figure 6 shows the average frequency (10 runs, 40 UCI data sets) of classifier

selection in ensembles generated with the GPE approach. It is clear from this figure

that the most used classifier is the most accurate one: random forest (see Table 2).

This is somewhat an expected result, however, it is interesting that the second and

third more frequently selected classifiers were GKridge and Klogistic, respectively.

The latter classifiers are not among the best ones in terms of individual performance,

see Table 2. These results confirm findings in ensemble theory that suggest not only

accuracy of individual ensembles is important, but also models diversity (i.e., their

ability to make uncorrelated errors)13,14,6,26.
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Fig. 6. Average frequency of classifier selection in ensemble functions (40 data sets).

Table 7 shows the average number of terminal and non-terminal nodes (10 runs,

40 UCI data sets) in the fusion functions generated by the proposed method. Re-

call terminal nodes are associated to classifiers’ outputs, while non-terminal nodes

correspond to arithmetic operators. From Table 7 it can be seen that there is not a

conclusive trend regarding the number of nodes. Nevertheless, it can be noticed that

for some data sets very small trees (fusion functions) are obtained, e.g., “Monks

(−(NN,Bayes))” and “Wine” ((+(
√

(RF ),KL))) while for other data sets, large

trees are evolved, e.g., “Satimageb” . This variety of results reveals GP’s adaptive

property for generating ad-hoc fusion functions for specific data sets.

b−(KR,−(−(2(−(0.5,−(KN,−(2(−(0.8, RF )),×(×(0.6,−(0.5,2 (NN))),×(KR,KR)))))), RF ),
+(RF,RF )))
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Table 7. Average number of terminal and non-terminal nodes for fusion functions learned with
GPE, each result is the average of 10 independent runs.

Optimizing accuracy Optimizing f1
#Non-terminal #Terminals #Non-terminal #Terminals

australian 10 12 16 21
balance 16 22 15 19
banana 15 18 11 15
bands 13 16 15 21
breast 13 17 18 25
bupa 8 10 15 20
car 8 14 11 16

chess 11 14 8 12
contraceptive 21 28 17 21

crx 13 17 12 15
flare-solar 13 14 21 31
german 13 15 13 16

haberman 10 13 12 17
heart 8 11 7 9

hepatitis 6 8 14 18
housevotes 10 14 9 12

iris 3 4 3 2
led7digit 12 13 20 28

mammographic 11 15 17 23
monks 2 2 3 2

phoneme 18 21 14 21
pima 8 12 14 21
ring 13 16 12 16

saheart 17 24 19 24
satimage 18 20 9 10
segment 8 12 17 20
sonar 8 10 10 13

spambase 13 18 10 13
spectfheart 10 14 19 24

splice 11 12 9 12
tae 14 18 17 23

texture 4 4 7 7
thyroid 8 13 8 13

tic-tac-toe 10 13 10 12
titanic 8 11 7 9

twonorm 12 15 10 14
vehicle 15 16 22 24
vowel 7 10 7 8
wine 4 5 2 3

wisconsin 7 8 8 11

4.7. Homogeneous ensembles

An experimental assessment to evaluate the suitability of the proposed mechanism

to build homogeneous ensembles is also performed. The aim is to make an initial

evaluation of the proposed approach when applied to ensemble models from indi-

vidual classifiers of the same nature. The “Ring” data set is considered for this ex-

periment as it is the largest one. For building homogeneous ensembles the proposed

approach is applied as described in Section 3 following experimental constraints

of Subsection 4.1, without changes. The only difference is that confidence values

h1(xi), . . . ,hL(xi) are obtained from the same classification model, but trained on

different subsets of the same data set as the source for diversity to build homoge-

neous ensembles in this study. Specifically, half of training instances and features

were randomly selected to train each classification model, where a total of L = 10

models were considered for this experiment. Empirical results for homogeneous

ensembles are summarized in Table 8. For different ensemble building strategies,

average and standard deviation performances in terms of accuracy and f1 measure,

are reported after 10 independent runs.

Homogeneous ensembles generated with GPE outperformed the best individual

classifier (GKridge: 48.74 accuracy, 65.53 f1) and the other ensemble variants, sim-
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Table 8. Average and standard deviation performances for homogeneous ensembles over “Ring”
data set; AVE: raw fusion; GPE-a: GP using only sums; GPE: proposed GP.

AVE AVE-Top5 GPE-a GPE-a-Top5 GPE GPE-Top5

KNN

Acc. 10.54(2e-15) 14.46(4e-15) 36.92(4.23) 39.39 (5.16) 86.52(2.94) 84.72(2.99)
f1. 18.67(4e-15) 23.4(4e-15) 44.21(5.91) 41.71 (11.75) 86.43(2.26) 83.30(2.15)

KRIDGE

Acc. 24.37(0) 24.64(4e-15) 46.02(1.03) 46.02(1.31) 77.17(0.86) 77.01(2.05)
f1. 28.89(8e-15) 29.65(0) 44.65(2.35) 45.88(5.31) 74.75(2.31) 71.68(1.19)

NAIVE

Acc. 29.59(4e-15) 28.29(0) 52.77(1.48) 47.58(1.07) 83.39(1.24) 80.85(1.03)
f1. 21.19(0) 22.85(4e-15) 45.11(2.56) 46.65(7.39) 76.15(2.71) 74.73(3.53)

NEURAL

Acc. 20.99(4e-15) 24.14(4e-15) 48.27(1.39) 48.81(1.71) 79.00(0.17) 75.66(0.22)
f1. 21.13(0) 23.02(4e-15) 48.87(2.11) 50.86(0.64) 77.74(0.28) 76.05(0.31)

RF

Acc. 4.28(0) 5.50(0) 51.12 (1.28) 51.61 (1.35) 95.30(0.35) 94.67(0.22)
f1. 2.57(0) 3.87(0) 40.26 (14.86) 37.86 (20.07) 95.20(0.20) 93.78(0.62)

KLOGISTIC

Acc. 24.05(4e-15) 25.09(0) 47.74(1.11) 47.68(1.07) 77.47(1.90) 77.30(1.84)
f1. 26.57(0) 28.07(0) 46.04(3.19) 46.65(7.39) 75.68(1.91) 72.64(0.62)

ilar behavior was observed by heterogeneous ensembles. Considering results from

this case study, it is possible to conclude that the proposed approach is also useful

to generate highly effective homogeneous ensembles. However, comparing the best

homogeneous ensemble performance for the ring data set to the best heterogeneous

ensemble built by GPE (95.95 accuracy, 96.15 f1); the heterogeneous approach sig-

nificantly improves the others. A partial conclusion indicates that heterogeneous

ensembles seem to outperform homogeneous ones; although an extensive study is

required to backup these results.

5. Conclusions

In this research, a genetic programming approach to learn fusion functions for build-

ing heterogeneous ensembles has been presented. The proposed approach consists

in combining classifiers outputs through GP. Approaching ensemble construction

through an evolutionary technique allows for more complex fusion-functions spaces

to arise. GP solutions representation includes arithmetic operators to relate in-

dividual learners thus non-linear fusion functions can be evolved in an ensemble.

Empirical results on both, benchmark data and a challenging object-recognition

data set were reported. The extensive empirical assessment exposed the proposed

approach effectiveness. GP based ensembles consistently outperformed the best in-

dividual models, a raw-ensemble of heterogeneous classifiers, several configurations

to optimize ensemble models and traditional ensembles.

An analysis of evolved solutions, in terms of individual classifiers frequency

to form an ensemble, not only confirmed the expected high membership of the

best individual classifier but also showed at second and third ranking positions

two weak learners. This confirms, to a certain level, diversity importance among

ensemble members that make uncorrelated errors. Another empirical assessment

applied an ensemble solution from a specific data set to the rest of benchmark data

sets. Tendencies showed high performances which imply generalization properties of

evolved fusion functions. Also, homogeneous ensembles were built by the proposed
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approach demonstrating flexibility.

Several research directions were identified: including the suitability of the pro-

posed approach to learn fusion functions for other tasks, including multi-modal

information retrieval 8 and ensemble feature selection 21.
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