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Abstract5

This paper presents a new algorithm for fingerprint indexing, which is based on minutia triplets, and it6

is very tolerant to missing and spurious minutiae. In this sense, a novel representation for fingerprints is7

proposed by defining a triangle set based on extensions of Delaunay triangulations. Moreover, a set of robust8

features is used to build indices. Finally, a recovery method based on calculating the recommendation score9

is introduced, using a new similarity function between geometric transformations. Our proposal was tested10

on well known databases, showing that it outperforms most of the already reported methods, especially11

under conditions of distortions.12
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1. Introduction15

Biometrics can be defined as the automated use of physiological or behavioural characteristics to identify16

or verify the identity of a person. One of the most widely used techniques in biometric systems is the17

comparison of fingerprints. The ridge patterns found on fingers and other body parts are unique, and they18

provide enough information to distinguish a specific person from the rest. Also, these patterns can be19

extracted very easily and are very reliable compared with other biometric features.20

There are two kinds of general problems related to fingerprint recognition systems: verification and21

identification. The purpose of verification systems is to confirm the identity of a particular individual, so22

comparisons are only necessary with fingerprints that belong to that person [16, 40]. On the other hand,23

the purpose of identification is to establish the identity of a specific person, given a query impression and a24

dataset of fingerprints of different individuals. As we can see, identification requires a search on all possible25

fingerprint candidates. However, a comparison between the query and every candidate stored in the dataset26

is impracticable, since modern fingerprint collections usually have millions of entries.27
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Preprint submitted to Expert Systems with Applications October 8, 2012



There are some proposed approaches in literature that try to reduce the search space in which the28

comparisons are made [8]. One of these solutions is the classification of the fingerprints stored in the29

dataset, in the five classes of Henry (left loop, right loop, arch, tended arch and whorl) [29, 41, 19]. These30

classes divide the impressions in groups according to ridge patterns. In this way, comparisons are only31

made with fingerprints in the dataset that have the same classification as the query. This method has32

serious disadvantages mainly because the number of classes in which the search space is divided is small.33

In addition 90% of impressions belong to three classes [28], so, in most cases, the reduction of potential34

candidates is insignificant.35

Another group of algorithms uses indexing in order to return a subset of the dataset, ordered by a36

recommendation score. This approach, also known as continuous classification, allows choosing the number37

of impressions of the dataset that will be compared to the query. However, most of these solutions do not38

have robust strategies to deal with missing or spurious minutiae, and the commonly used mechanisms to39

reduce the negative effect of noise are insufficient.40

This paper proposes an indexing algorithm which is prepared for dealing with the problem of missing41

and spurious minutiae. This algorithm is based on minutia triplets, and it introduces a novel fingerprint42

representation based on an expanded triangle set obtained from Delaunay triangulations. From each of43

these triangles, indices are formed using fingerprint features such as ridge counters, minutia directions and44

triangle sign. With these indices, an index table is built in preprocessing time. In the retrieving stage, a45

novel method for calculating the recommendation score and a mechanism to deal with noise are also defined.46

Thus, we can get a list of candidates with the highest degrees of affinity with the query, considering the best47

geometric transformation.48

The rest of this paper is organized as follows. In section 2, some basic concepts, which are useful for49

understanding the rest of the document, are presented. Also, a general scheme of fingerprint indexing50

algorithms is given. Next, in section 3, a description of the main state of the art algorithms is exposed. In51

section 4, a new feature extraction strategy is defined using a new criterion for selecting the set of triangles.52

Section 5 introduces the index function, the indexing process, and index table construction. In section 6,53

a novel method for recovering a list of candidates is proposed. Finally, experimental results are shown in54

section 7, and our conclusions are given in section 8.55

2. Background56

In this section, we present some basic concepts and a general scheme of fingerprint indexing algorithms.57

Thus, we declare the necessary background for understanding our proposal and the rest of the paper. Finally,58

we describe the Delaunay triangulation and its properties, considering that this kind triangulation is used59

for many indexing algorithms, including our approach.60
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Figure 1: Fingerprint parts.

2.1. Fingerprint related concepts61

Fingerprints are marks produced by the contact of a finger with a surface in a controlled environment.62

These marks reflect the different patterns formed by the ridges that are visible in the epidermis. For many63

years, fingerprint image acquisition has been accomplished from different sources like: inked finger on paper64

or ink-less fingerprint scanners. In section 7.1, we can see examples of some datasets of fingerprints obtained65

in different sources.66

Most of the indexing algorithms use minutiae as basis for representing fingerprint and building indices.67

Minutiae are singularities in the ridge patterns, which are commonly classified in two types: bifurcations68

and endings. A bifurcation is a point where a ridge splits into two ridges, while an ending is an endpoint of69

a ridge. In Fig. 1, we can see examples of bifurcations, endings, and ridges in a real fingerprint.70

The direction of a minutia is another commonly used feature in fingerprint indexing algorithms. This71

feature is defined as the angle formed between the horizontal axis and the tangent of the ridge associated72

to the corresponding minutia, in counter clockwise. In Fig. 1, a bifurcation with its respective direction is73

shown.74

There are several published minutia extraction algorithms which have shown an allowable perfor-75

mance [22, 41]. However, in almost all of these methods, the possibility of finding false minutiae always76

exists. False minutiae are the points which are incorrectly identified as minutiae. In Fig. 1, we can see a77

false minutiae caused by a scar in the finger.78

2.2. Indexing based systems79

The general scheme of all indexing based fingerprint identification systems, is the same, see Fig. 2. Such80

scheme is made up of an indexing stage and a retrieving stage. Indexing stage is also known as offline stage81

since it is executed while the fingerprint collection is preprocessed. The queries are attended in a retrieving82

stage, which detects the query occurrence in the fingerprint collection.83
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Figure 2: General scheme of an indexing based fingerprint identification system.

The indexing stage can be described as follows in almost all reported methods. Let I = {F1, F2, . . . , FN}84

be a collection of fingerprints, where Fi represents the i-th stored impression, and N is the number of85

impressions in I. Each Fi ∈ I is preprocessed for extracting a set of features, which is used as model for86

representing it. These models are the basis for calculating indices which are stored in the index table. This87

table is used for reducing the search space during the retrieving stage.88

The retrieving stage also has the same structure in almost all reported methods. Given a query fingerprint89

Q, it is required to detect if there is any Fh ∈ I such that Fh and Q represent the same finger of the same90

person. This stage finds a list of candidates CQ ⊂ I, such that the probability of finding Fh in CQ is very91

high, while the probability of finding Fh in I \ CQ is very low.92

Each query Q is processed in a similar way as it was done for each fingerprint in I during the indexing93

stage. Thus, a set of features is calculated, and it is used as model for representing Q. This model is used94

for calculating the query indices, which are used for finding the matches with the already calculated index95

table. Finally, the list of candidates is obtained by combining these match results.96

2.3. Delaunay triangulation97

In general, a triangulation of a set of points, P = {p1, p2, . . . , pN}, in the plane is the set of triangles that98

conforms a maximal planar subdivision whose vertex set is P . A maximal planar subdivision is a subdivision99

S such that no edge connecting two vertices can be added to S without destroying its planarity [2].100

Delaunay triangulation is a specific kind of triangulation, which has been used for representing finger-101

prints, in some of the reported indexing algorithms [1, 27, 28]. This concept is defined as follows.102

Definition 1 (Delaunay Triangulation). Let P = {p1, p2, . . . , pN} a set of points in the plane, and let103
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T be a triangulation of P . Then, T is a Delaunay triangulation if and only if every triangle △PiPjPk that104

belongs to T satisfies that its circumcircle contains no other point of P .105

Based on the above, we define a Delaunay graph of a Delaunay triangulation T as a tuple G = 〈P,E〉106

where P is the set of planar points that originated T , and E is the set of edges that conforms the triangles107

of T . Each edge has a single occurrence in E.108

As we can see, the insertion of a new point in a Delaunay triangulation only affects the triangles whose109

circumcircles contain that point. As a result, noise only affects the Delaunay triangulation locally, which110

gives a good structural stability when small changes occur in the set of points.111

Delaunay triangulations have some properties [2], such as:112

• The union of all triangles of a Delaunay triangulation of a set of points P conforms the convex hull113

of P .114

• The Delaunay triangulation of a set of points P has 2N − 2− k triangles and 3N − 3− k edges, where115

N is the number of points in P and k is the number of points of P forming the convex hull.116

• The Delaunay triangulation maximizes the minimum angle of every formed triangle. Compared to any117

other triangulation of a set of points P , the smallest angle in the Delaunay triangulation is at least as118

large as the smallest angle in any other.119

• A Delaunay triangulation of a set of points P is unique if there is no circumcircle with more than three120

points of P on its border.121

In our paper, we use Delaunay triangulation as start point to define an expanded triangle set, which is122

used by our indexing proposal for representing fingerprints.123

3. Related work124

Using the above mentioned scheme, several indexing based approaches for fingerprint identification have125

been reported [1, 3, 28, 8, 33]. These approaches are classified by us according to the fingerprint features126

used for indexing into the following classes: minutia triangle based approaches, ridge based approaches, and127

image processing based approaches.128

3.1. Minutia triangle based approaches129

The most commonly proposed strategies are based on minutia triangle. The first column of Table 1130

shows a summary of these reported methods.131
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Table 1: The datasets and indexing methods for which published results are available.

Reported solution Topological fea-

tures

Triangle geometric features Fingerprint features

Proposed approach

(2011) [in this paper]

Delaunay trian-

gles + Redundant

triangles

handedness (st) relative direction of each minutia re-

garding the opposite triangle side

(β1, β2, β3) and ridge counter be-

tween pairs of minutiae (r1, r2, r3)

Biswas et al. (2008) [4] All triangles side lengths (l1, l2, l3) and angle

amplitudes (α1, α2, α3)

ridge curvature for each minutia

neighborhood (c1, c2, c3)

Ross and Mukherjee

(2007) [43]

Delaunay triangles cosines of angles (cos(α3)),

perimeter and area ratio (p2/A),

and side ratios (l3/l1)

second degree curve coefficients of in-

cident ridges (κ1, κ2, κ3, λ1, λ2, λ3)

Liang et al. (2007) [28] Low-order Delaunay

triangles

angle amplitudes (α1, α2), hand-

edness (st) and side lengths (l3)

minutia types (11 values) and rela-

tive directions of each minutia regard-

ing the incident triangle sides (φ1, φ2,

φ3)

Liang et al. (2006) [27] Delaunay triangles angle amplitudes (α1, α2), hand-

edness (st) and side lengths (l3)

minutia types (11 values) and rela-

tive directions of each minutia regard-

ing the incident triangle sides (φ1, φ2,

φ3)

Bhanu and Tan (2003)

[3]

All triangles side lengths (l3), angle ampli-

tudes (α1, α2) and handedness

(st)

minutia types (4 values)

Choi et al. (2003) [12] All triangles side lengths (l3) and angle hand-

edness (st)

minutia types and directions

Bebis et al. (1999) [1] Delaunay triangles side ratios (l1/l3, l2/l3), cosines

of angles (cos(α3))

None

Germain et al. (1997)

[15]

All triangles side lengths (l1, l2, l3) ridge counters (r1, r2, and r3) and

minutia directions (θ1, θ2, θ3)

Feature extraction is a basic subtask in any indexing based system. This step is used in the same way132

for preprocessing fingerprints in collections and queries, and the resulting feature model is used for building133

the index tables.134

The feature extraction step in minutia triangle based solutions can be described as follows, see Fig. 3.135

First, the minutiae of the fingerprint are detected. Next, a set of triangles is calculated; examples of these136

kinds of triangle sets are shown in the second column of Table 1. After that, geometric and fingerprint137

features are calculated for completing the feature model; examples of these features are also shown in the138

last two columns of Table 1.139

As we can see, there are some ways for selecting this set of triangles: using all triangles among any140

minutia triplets in the fingerprint [3, 4, 12, 15], only using Delaunay triangles [1, 27, 43], and using low-141

order Delaunay triangulations [28]. However, all of the reported solutions have at least one of the following142

problems:143

1. Considering all triangles increases the execution times and identification errors by the possibility of144
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Figure 3: General scheme of feature extraction in minutia triangle based approaches.

false acceptance.145

2. Delaunay triangulation may not be stable if fingerprints are affected even by tiny distortions, such as:146

minutia shifts, spurious minutiae, and missing minutiae.147

3. Using low-order Delaunay triangles only reduces the negative effect caused by minutia shifts.148

In section 4.1, we introduce a new criterion for choosing triangles, called expanded triangle set, con-149

sidering Delaunay triangles and some redundant triangles. The expanded triangle set helps to reduce the150

negative effect produced by spurious minutiae and missing minutiae.151

On the other hand, when the set of triangles is resolved, geometric and fingerprint features are calculated152

for building the above mentioned feature model. These features must be stable by linear distortions, such153

as scale, rotation, and translations, non-linear distortions, like shear, and other image source damages, like154

occlusion and clutter caused by scars, dryness, sweat, and smudge.155

Geometric features are used in almost all reported methods, see Table 1. However, at least one of the156

following problems is presented in the reported solutions:157

4. Geometric features based on measures, such as distances, areas, or combinations, may not be stable158

by even tiny distortions.159

5. Geometric features based on angles are more stable than those based on measures; however, the160

implementation of mechanism for reducing the negative effect of distortion is required.161

Fingerprint features, meanwhile, are also used in almost all reported methods, see Table 1. The effec-162

tiveness of a fingerprint indexing system widely depends on the accuracy of the feature extraction methods.163

Therefore, all reported solutions have the following problem:164

6. The feature extraction methods reported in the literature are not unfailing ones.165

To check for fingerprint feature extraction methods, other already published works can be consulted, for166

example the comparative study of Rajanna et al. [41] published two years ago.167

In section 4.2, we propose a feature model only considering the triangle handedness, as geometric feature,168

relative minutia directions, and ridge counters, as fingerprint features. As it can be seen in other steps of169
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our proposal, the goal of our research is focused on improving indexing and retrieving tasks, by dealing with170

the failures of feature extraction methods instead of proposing better solutions for feature extraction tasks.171

Index calculation is the subsequent step after feature extraction. Each triangle t in each already calculated172

feature model is inserted in the index table. This table works as a hash table where indices are used as keys,173

and triangles are used as values. Triangles with the same features are inserted in the same key inside the174

index table.175

In the retrieving stage, the index calculation is used for generating the query index table. In this case,176

the indices are calculated in similar way as it is done during the indexing stage, including some redundant177

information taking into account the possibility of noise distortions in data. That is, the same triangle is178

inserted in position keys associated with very similar features.179

Using the two above mentioned tables, the index table and the query index table, the retrieving stage180

proceeds to the match calculation step. This step is also known as accumulating evidence step, since it181

performs a casting among all fingerprints in the collection.182

There are two reported ways for performing the match calculation step: vote based strategy and trans-183

formation based strategy. The vote based strategies accumulate evidence by counting a vote for every entry184

stored in the indexed locations and picking up the ones with the high number of votes [3, 27, 28, 43].185

The problem with these approaches is that it does not consider whether these votes are consistent among186

themselves; this situation is solved by transformation based strategies. In this sense, the transformation187

based strategies accumulate evidence by counting votes in the transformation space introducing a measure188

of coherence [15, 1, 4]. The main idea in these approaches is to consider the best geometric transformations189

between query and template.190

The solution proposed in this paper includes a new way for match calculation, guaranteeing coherence191

among the votes in the transformation space and considering distortion in data, see sections 5 and 6.192

3.2. Other approaches193

One of the most successful approach for fingerprint indexing is uses ridge invariants as features [13]. This194

work proposed the creation of substructures formed by the ridges that converge in each minutia. Each ridge195

is subdivided in sub-ridges taking the minutiae as extreme points. These sub-ridges are labeled according to196

their relative positions with respect to the analysed minutia. The indices are derived from binary relations197

between substructures and the labels generated by its associated sub-ridges.198

Another very accurate approach uses the Minutiae Cylinder Code in order to generate fixed length binary199

indices [8]. This feature is a representation based on 3D data structures, and it is built from minutia distances200

and angles. In the retrieving stage, a local sensitive hashing algorithm is used for finding similarities between201

the binary vectors.202
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On the other hand, there is another kind of methods for fingerprint indexing based on image processing.203

For example, there is a proposal where Gabor filters have been used for processing each minutia neighborhood204

and obtaining the index vectors [24]. Symmetric filters from cores, deltas, and parallel patterns are used205

as indexing features [26]. Additionally, MACE filters are used in order to generate index vectors [30]. The206

SIFT, SURF, and DAISY points are also used as features for indexing tasks [18, 44]. Moreover, there is207

as approach where a combination of the results of different indexing methods is proposed [5]. Another208

algorithms use the orientation maps of fingerprints in order to generate features to construct the index209

vectors [9, 10, 21, 25, 32, 33, 34]. In the literature there are some methods that estimate with accuracy the210

orientation map [42]. Some proposals also merge different strategies of fingerprint indexing in order to fuse211

their advantages [5, 11].212

There is other approach that defines a minutia tree in order to find sequences of minutiae with the same213

geometric relationships between the fingerprints [38]. Other reported method indexes the minutiae in order214

to find correspondences between fingerprints [47]. Another algorithm generates indices from the interaction215

of the queries and a fingerprint reference set; which is built with fingerprints having a good representative216

and discriminative power, in preprocessing stage [17].217

4. Feature extraction step218

In this section, we propose a new feature extraction strategy using a new criterion for selecting the set of219

triangles, starting from Delaunay triangulation. First, we define the expanded triangle set of a planar point220

set in section 4.1. Next, the feature model for representing fingerprints is proposed, see section 4.2. As in221

a previous work [39], our representation is an extension of the Delaunay triangulation that deals with some222

kind of noise in the fingerprints, in this case with spurious minutiae.223

4.1. Selecting the set of triangles224

Let P = {p1, p2, . . . , pN} be a set of points in the plane, where G = 〈P,E〉 is its Delaunay graph and T225

is its Delaunay triangulation. To be able to formally define the expanded triangle set of P , we first define226

the triangular hull of any point pi ∈ P .227

Definition 2 (Triangular hull). Let pi be a point of P . The set Ni = {pj|{pi, pj} ∈ E} denoted the point228

set formed by all the adjacent vertices of pi in the Delaunay graph G. The triangular hull of pi is defined as229

the Delaunay triangulation of the planar point set Ni, and it is denoted by Hi.230

As we can see, the number of points in each set Ni is the degree of pi in the graph G, and it is denoted231

by di.232

Definition 3 (Expanded triangle set). The expanded triangle set of P is defined as R = T ∪H1 ∪H2 ∪233

. . . ∪HN .234
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The set R includes the triangles in the Delaunay triangulation of P and any triangle in the triangular235

hulls of the points in P . Therefore, |R| ≥ |T |; however, we can prove that |R| ∈ O(N). The following236

theorem gives a characterization of the number of triangles in R.237

Theorem 1. The number of triangles in R is lesser than 13N − 25.238

PROOF. The number of triangles in R can be calculated as follows:

|R| ≤ |T |+
N
∑

i=1

|Hi|. (1)

Since T is the Delaunay triangulation of a set with N points, the number of triangles can be bounded239

by 2N − 1. The same statement can be applied to each triangular hull Hi. Thus, the inequality (1) can be240

transformed in (2).241

|R| ≤ 2N − 1 +
∑N

i=1(2di − 1),

= 2N − 1 + 2
∑N

i=1 di −N,

= N + 2
∑N

i=1 di − 1.

(2)

Using a basic principle of the graph theory, the sum of the degrees, di, of the vertices of the graph G is242

precisely twice the number of edges, |E|. Thus, the inequality (2) can be transformed in (3).243

|R| ≤ 4|E|+N − 1. (3)

Using the Euler characteristic for planar graph [2] we obtain |E| ≤ 3N−6. Thus, we have |R| ≤ 13N−25,244

and we conclude the proof.245

�246

As we can see, despite the fact that |R| is greater than |T |, the number of triangles of |R| is still linear247

with respect to N . This is very desirable if we consider that the sets R will be used as a representation248

for fingerprints in indexing tasks. This property also has the advantage that the identification errors by249

false acceptance are reduced in comparison with other approaches that use all triplets or only Delaunay250

triangulations. On the other hand, with this representation the execution times of our proposal are very251

similar to methods that only use Delaunay triangulations.252

The advantage of the set R is that it contains all of the Delaunay triangles that are formed when each253

minutia is eliminated individually. In this way, we ensure that even when the extraction method fails to find254

a minutia, some of the matchings will be found.255
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(a) Delaunay triangulation (b) Delaunay triangulation

without p

(c) Expanded triangle set

Figure 4: Triangle set examples.

In Fig. 4(a), we can see a Delaunay triangulation of a set of points. In Fig. 4(b), we can appreciate major256

structural changes in the same triangulation when removing the vertex p. On the other hand, Fig. 4(c) shows257

the expanded set of the points including p. As we can see, Fig. 4(c) has corresponding triangles with both,258

Fig. 4(a) and Fig. 4(b) due to the use of the expanded triangle set. This example shows that with the259

defined set R is more likely to find correspondences than with Delaunay triangulations, especially when260

some minutiae are not detected on the involved fingerprints.261

In the present paper, the expanded triangle sets of minutiae are used for representing fingerprints in262

indexing and retrieving tasks. Moreover, in section 7.3 we show an experimental evaluation for checking the263

good accuracy obtained using expanded triangles for indexing tasks.264

4.2. Triangle invariant features265

Let P = {p1, p2, . . . , pN} be the set containing all the planar points representing the minutiae in a266

fingerprint F . Let R be the expanded triangle set of P , and let t ∈ R be a triangle, which represents a267

minutia triplet. Let m1 = (x1, y1), m2 = (x2, y2), and m3 = (x3, y3) be the three points of t, with their268

corresponding planar coordinates, which are sorted in ascending order regarding the length of the opposite269

side.270

The feature vectors associated to t in the fingerprint F is denoted by f(t), and it is defined as follows

f(t) = (st, β1, β2, β3, r1, r2, r3), (4)

where st is the triangle sign, βi is the relative direction of mi, and ri is the ridge counter of the opposite271

side to mi in the triangle t. The seven components of this feature vector are formally defined as follows.272

The twice signed area of t is calculated using the following mathematical expression

At = x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2). (5)

Using At, we define the triangle sign of t as st = 0 if At < 0; otherwise st = 1. As we can see, this feature273

is invariant to rotation.274
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Let θi be the angle that the ridge makes with respect to the X-axis at the minutia point mi. Let275

u1 = −−−→m2m3, u2 = −−−→m3m1, and u3 = −−−→m1m2 be the vectors representing the sides of the triangle t. Let di276

be an angle, 0 ≤ di < 360◦, which is co terminal with θi − Arg(ui), where the vector ui forms an angle277

Arg(ui) with respect to the X-axis. Using di, we define the relative direction of mi as βi = ⌊di/45◦⌋, where278

⌊·⌋ denotes the integer part operator or floor function. Since 0 ≤ di < 360◦, then we have 0 ≤ βi < 8.279

The ridge counter ri is defined as the number of ridges crossed by the opposite side of mi in the triangle280

t. We study the statistical behavior of this feature in some real world datasets, and only in a small number281

of cases are greater than 16. Therefore, we remove from R those triangles with at least one value outside282

the interval, 0 ≤ ri < 16.283

The feature vectors presented in this section can be represented as a function f : R → Φ called feature284

function, where the set Φ = K1 ×K3
3 ×K3

4 , assuming Kn = {0, 1, . . . , 2n − 1}, represents the feature space.285

Thus, we are able to define the formal representation of a fingerprint F , which is used in this paper.286

Definition 4 (The feature model). Let F be a fingerprint. The model of F is defined as a triplet M =287

〈P,R, f〉, where P is the planar point set representing the minutiae of F , R is the expanded triangle set of288

P , and f is a feature function f : R→ Φ.289

This feature model is used during indexing and retrieving stages for representing fingerprints and queries290

respectively. The triangle sign used in our approach is a very robust feature. Additionally, we use ridge291

counters and minutia directions, which are widely used in other triplet based indexing algorithms. These292

features, combined with the mechanism defined in section 6.1 to reduce the negative effects of noise, show293

a good performance when they are used in indexing tasks, see section 7.294

5. The indexing stage295

In this section, we introduce the index function, and we describe the index building process. We also296

define the index table that will contain those indices. This table is built in the preprocessing stage of our297

proposal in order to collect information that will be used in the recovery stage.298

5.1. The index function299

Let M = 〈P,R, f〉 be a feature model, according to the definition 4, and let t ∈ R be a minutia triangle.300

The feature vector f(t) ∈ Φ has seven components. One of them get values in K1, three of them get values301

in K3, and the other ones get values in K4. As we can see, for all n ≥ 1 the numbers in Kn have a binary302

representation with only n bits. Therefore, concatenating the binary representations of the components of303

f = f(t), we can conform an integer number represented with 22 bits. This integer number is denoted by304

h(f). Using theses facts, we define the index function as follow.305

12



Definition 5 (Index function). The index function in the feature model M is defined as h : Φ → K22,306

such that for each t ∈ R, h(f(t)) is the integer number obtained by concatenating the binary representation307

of the components of the feature vector f(t).308

5.2. The index table309

Let D = {M1,M2, . . . ,MN} be a collection of feature models, where Mi = 〈Pi, Ri, fi〉 for each i,310

1 ≤ i ≤ N . To be able to formally define the index table of D, we start by defining the record of a triangle311

t ∈ Ri in a model Mi.312

Definition 6 (Record of a triangle). Let i be an integer number, 1 ≤ i ≤ N , and let t ∈ Ri be a triangle313

in a model Mi ∈ D. The record of t is defined as the vector r(t) = (i, x1, y1, x2, y2, x3, y3), where (xi, yi) are314

the coordinates of each point mi in the triangle t, and i is the fingerprint identifier.315

Let Ak be the set of records of triangles such that their corresponding index value is k; that is

Ak = {r(t)|t ∈ Ri, 1 ≤ i ≤ N and h(t) = k}. (6)

The index table of D is a hash table that uses the index values (k) as key and the list of records (Ak) as316

values. In this paper, we use minimal perfect hashing [7] for implementing such hash table.317

The algorithm 1 shows the pseudo-code for building the index table of the collection D. First, an empty318

hash table H is created; this table is populated in the following lines. Lines 2 and 3 traverse all models in319

D and all of the triangles in such models. In the iteration of the lines 4-9, the function index is evaluated320

in the triangle t for calculating the index k, which is used as key in the hash table H . If the key k has been321

calculated in H , the corresponding set Ak is updated by adding a new record r(t).322

6. The retrieving stage323

In this section, we propose a novel method for recovering a list of candidates based on the index table,324

which was previously constructed. Details of the used algorithm for computing similarities between the325

query and the stored models are also described in this section.326

6.1. Processing the query327

The query Q is processed in a similar way as it was done for each fingerprint in I during the indexing328

stage. First, the feature model MQ = 〈PQ, RQ, fQ〉 of Q is calculated. Next, a query index table of MQ is329

built using the algorithm 2.330

The algorithm 2 works as follows. In line 1, an empty hash table is initialized, and it is populated by331

traversing every triangle t ∈ RQ. The record of each triangle t is calculated in line 3; in this case, we use332

r(t) = (x1, y1, x2, y2, x3, y3) only including the coordinates of the points of t. Next, the feature vector fQ(t)333

is calculated in line 4. For each feature vector f , the set of redundant feature vector is defined as follows.334
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Function CreateIT(D)

Input: D = {M1,M2, . . . ,MN} - feature models representing the fingerprint collection

Output: H - the index table of D

H ← an empty hash table without keys and without values.1

foreach Mi = 〈Pi, Ri, fi〉 ∈ D with 1 ≤ i ≤ N do2

foreach t ∈ Ri do3

k ← h(f(t));4

Ak = ∅;5

if k is a key of H then6

Ak ← the value associated to the key k in H ;7

Ak ← Ak ∪ {r(t)};8

Insert the key k and the value Ak in H ;9

return H ;10

Algorithm 1: Pseudo-code for creating the index table.

Definition 7 (Redundant feature vectors). Let f ∈ Φ be a feature vector such that f =335

(st, β1, β2, β3, r1, r2, r3). The set of redundant feature vector of f is defined as336

J(f) = {f ′ |‖f ′ − f‖∞ ≤ 1 ∧ ‖f ′ − f‖1 ≤ e1 },

where ‖x‖∞ = max(|x1|, |x2|, . . . , |xk|), ‖x‖1 =
∑k

i=1 |xi|, for x = (x1, x2, . . . , xk). Besides, e1 is an user337

defined threshold, according to the application.338

The set of redundant feature vector J(f) is used for considering noise distortion during the retrieval339

stage. In our work, we do not accept noise distortion in the first component st, in order to reduce the search340

space and improve the index selectivity; moreover, st is a geometric feature very stable in the presence of tiny341

distortions. The presence of noise in the other fingerprint features is quite expected; therefore, redundant342

vectors are required for facing the instability problems, which were described in section 3.1. Thus, we343

consider e31 redundant feature vectors, one of them is f , and the others ones differ in ±1 for at least one344

component.345

For each triangle t ∈ RQ, the set J(f) is traversed in line 5. In the iteration of the lines 6-11, the function346

index is evaluated for each redundant feature vector f ′ for calculating the index k, which is used as key in347

the hash table HQ. If the key k has been calculated in HQ, the corresponding set Ak is updated by the348

record r. It is important to remark that, in the case of query index table, the same record r can be inserted349

in different keys in HQ. This fact will be useful in next stages during the retrieving stage, for increasing the350

accuracy of our proposal.351
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Function CreateQIT(MQ)

Input: MQ = 〈PQ, RQ, fQ〉 - the query feature model

Output: HQ - the query index table of Q

HQ ← an empty hash table without keys and without values.1

foreach t ∈ RQ do2

r ← r(t);3

f ← fQ(t);4

foreach f ′ ∈ J(f) do5

k ← h(f ′);6

Qk = ∅;7

if k is a key of HQ then8

Qk ← the value associated to the key k in HQ;9

Qk ← Qk ∪ {r};10

Insert the key k and the value Qk in HQ;11

return HQ;12

Algorithm 2: Pseudo-code for processing the query.

6.2. Recovering index matches352

Let us suppose that the index table H of the collection of feature models D is given, and let HQ be353

the query index table of a query Q. Using H and HQ, we can compute the index matches by means of the354

algorithm 3.355

The line 1 of the algorithm 3 starts by initializing M as an empty hash table. Next, all of the keys k in356

the table HQ are traversed, see line 2. After that, the sets of triangle records Qk and Ak are obtained from357

HQ and H respectively. The set Qk is the set of triangle record with index k in HQ whereas Ak is the set of358

triangle record with the same index in H . Tentatively, each record q ∈ Qk can be matched with each record359

r ∈ Ak, since q and t represent triangles with similar feature vectors.360

A match between two records q and t is defined by three geometric transformations among corresponding361

sides in such triangles. Let τ1 = (λ, ω, x, y) be the geometric transformation between the smallest sides in362

the triangles represented by q and t. In this case, λ is the positive real scale factor, ω is the rotation angle363

in the range −180◦ < ω ≤ 180◦, and (x, y) is the translation vector. In the same way, we define τ2 as the364

geometric transformation between the second smallest sides, and τ3 as the geometric transformation between365

the highest sides.366

It is known that small local distortions can cause sizable global deformations [23]. In this way, the367
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Function FindMatches(H, HQ)

Input: H - the index table, HQ - the query index table

Output: M - the match table

M ← an empty hash table without keys and without values.1

foreach key k of HQ do2

Qk ← the value associated to the key k in HQ;3

Ak ← the value associated to the key k in H ;4

forall record q ∈ Qk do5

forall record r ∈ Ak do6

i← the fingerprint identifier in r;7

Ti ← ∅;8

if i is a key of M then9

Ti ← the value associated to the key i in M ;10

Υ← {τ1, τ2, τ3}, where τ1, τ2 and τ3 are the geometric transformation between the11

corresponding sides in the triangles of q and r;

Remove from Υ the non valid transformations;12

Ti ← Ti ∪Υ;13

Insert the key i and the value Ti in M ;14

return M ;15

Algorithm 3: Pseudo-code for detecting all matches.

disparity between two pairs of analogous minutiae grows as their corresponding distances increase in size [20].368

Since the lengths of each triangle sides are almost always different, the deformation between corresponding369

sides can also be distinct. On the other hand, in a false matched pair of triangles we can find a true matched370

pair of minutiae. For these reasons, we use a geometric transformation for each side instead of a single one371

from the whole triangle. Moreover, in Fig. 6(a) of the section 7.3 we present an empirical justification for372

our proposal.373

In lines 7-14 of the algorithm 3, all the matches among the records q and t are calculated. The geometric374

transformations between these matches are inserted in the multiset Ti (Ti is a multiset since it can contain375

the same transformation several times). As we can see, the hash table M uses the fingerprint identifiers as376

keys and the multiset of geometric transformations as values. Each multiset Ti is called the transformation377

space of the fingerprint Fi.378

Since these concepts are used in fingerprint recognition context, we apply some restrictions for filtering379
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the set of geometric transformations used during retrieving stage. In this sense, we say that τ = (λ, ω, x, y)380

is a valid transformation if 1 − Eλ ≤ λ ≤ 1 + Eλ and −Eω ≤ ω ≤ Eω, where Eλ and Eω are user defined381

thresholds, see line 12 the algorithm 3.382

6.3. Computing candidate list383

Let Ti be the transformation space of the fingerprint Fi. This multiset contains geometric transformation384

candidates for aligning Fi with the query Q. Moreover, we need to choose the best transformation of Ti for385

aligning Fi with Q. In this section, we present a criterion for choosing such transformation.386

Definition 8 (Similarity function). Let τ1 = (λ1, ω1, x1, y1) and τ2 = (λ2, ω2, x2, y2) be two geometric387

transformations. The similarity function of these transformations is defined as388

ϕ(τ1, τ2) = min{fλ(λ1, λ2), fω(ω1, ω2), ft(x1, x2), ft(y1, y2)},

where fλ, fω, and ft are the partial similarity functions between the components of the geometric transfor-389

mations, which are defined as follows390

fλ(λ1, λ2) = beλ (λ1/λ2 − 1) ,

fω(ω1, ω2) = beω (ω1 − ω2),

ft(x1, x2) = bet(x1 − x2).

In this case, the family of bell shaped functions be(ξ) = exp(−ξ2/2e2) is used for defining the partial391

similarity functions. Moreover, the values eλ, eω, and et are user defined thresholds, according to the kind392

of application.393

In this definition, we choose the bell shaped function in order to describe in fuzzy terms, see [6], the394

degree of closeness between each corresponding pair of transformation components. Using the similarity395

function, we can define a weight of a transformation τ ∈ Ti.396

Definition 9 (Weight of a transformation). The weight of a transformation τ ∈ Ti is defined as follows

w(τ) =
∑

τ ′∈Ti

ϕ(τ, τ ′).

This weight allows us to proportionally describe the level of matching between the corresponding minutiae397

in these triangles by aligning Fi andQ with the transformation τ . The highest weight is associated to the best398

geometric transformation between these fingerprints. Using the weight of the best geometric transformation,399

we are able to define the recommendation score of the fingerprint Fi.400

Definition 10 (Recommendation score). The recommendation score of a fingerprint Fi is defined as401

ρ(i) = max{w(τ)|τ ∈ Ti}.402
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Our recommendation score proposal is quite similar to the one proposed by Germain et al. [15]. Our main403

contribution is the the use of similarity values and weights for taking into account the degree of closeness,404

during the score computation. In Fig. 6(c) of the section 7.3, we show a evaluation of our proposal using405

other methods for calculating the recommendation score.406

The main task in the retrieving stage is processing the list Ti for each fingerprint Fi, keeping the407

recommendation score in each identifier i, see algorithm 4. Line 1 initializes an empty candidate list. Next,408

the match table M is traversed for computing the recommendation score, see lines 2-5. Finally, the candidate409

list is sorted in descending order according to the score values, see line 6. The outputs of this stage are the410

fingerprints with the N largest score, where N is defined by the user, see line 7.411

Function FindCandidates(M , N)

Input: M - the match table, N - number of elements in the candidate list

Output: L - sorted list of candidates

L← ∅;1

foreach key i of M do2

Ti ← the value associated to the key i in M ;3

ρ← ρ(i) according to the definition 10;4

L← L ∪ {(i, ρ)};5

Sorting L in descending order according ρ components;6

return a sublist of L with the first N elements;7

Algorithm 4: Pseudo-code for calculating candidate list.

The computational complexity of this step can be studied as follows. This algorithm depends on the

number of keys in the match table M , which is denoted by us as m, and the number of geometric trans-

formations of each set Ti, which is denoted by us as ti. The complexity of line 4 is O(t2i ), since it is the

cost of computing the weights (see the summation of definition 9) and the recommendation score (see the

maximum value of definition 10). Line 6 complexity is the cost of sorting a list with m elements, that is

O(m logm). Thus, the complexity of algorithm 4 must be described using the following formula:

O

(

∑

i

t2i +m logm

)

, (7)

where
∑

i sums over the keys of M . In section 7.3, we present an analysis of the values for ti in an specific412

experiment. As we can see in Table 3, in the 96% of cases, the value of ti is lesser than 10, and in the413

99.36% of cases, the value of ti is lesser than 40. Moreover, values of ti greater than 41 are only considered414

for processing the template associated with the query (right hit); this fact only takes place, at most, once415
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per query. It means that the number of transformations in the sets Ti is very small, in almost all occasions.416

Therefore, the computational cost for calculating recommendation score is quite insignificant.417

With the description of the retrieving stage, we have concluded the last step for the description of our418

proposed indexing algorithm.419

7. Experimental results420

In this section, we describe and discuss the experiments made in order to evaluate the accuracy of our421

proposal, and we compare the results with some of the best state of the art algorithms.422

7.1. Data sets description423

In order to characterize our algorithm, experiments were conducted in the following well known datasets:424

• NIST DB4: The NIST Special Database 4 contains 4000 8-bit gray scale rolled impressions from 2000425

fingers (2 impressions per finger) [46]. The image size is 512 × 512 pixels and they are uniformly426

distributed in the five classes defined by Henry (arch, tended arch, whorl, left loop and right loop).427

• NIST DB4 (natural): This dataset is a subset of NIST DB4 [46], and it was obtained by reducing the428

cardinality of the less frequent classes in nature, in order to resemble a natural distribution. In this429

way, the size of this dataset is decreased to 1204 impressions.430

• NIST 14 (reduced): This dataset is composed by the last 2700 fingerprint pairs of NIST Special431

Database 14 [45]. This dataset contains rolled impressions of size 832 × 768 and its distribution432

resembles the fingerprint distribution in nature.433

• FVC2000 DB2: The second FVC2000 dataset is composed by 800 fingerprints from 100 fingers (8 im-434

pressions per finger) [35]. These images were captured using a low-cost capacitive sensor ”TouchChip”435

by ST Microelectronics. The size of the images is 256 × 364 pixels.436

• FVC2000 DB3: The second FVC2000 dataset have 800 fingerprints from 100 fingers (8 impressions per437

finger) [35]. The images where captured using an optical sensor ”DF-90” by Identicator Technology,438

resulting in images of 448 × 478.439

• FVC2002 DB1: This dataset consists of 800 fingerprints from 100 fingers (8 impressions per finger) [36].440

All of these images were captured using the optical optical sensor ”TouchView II” by Identix, resulting441

in images of 388 × 374 pixels in 8-bit gray scale.442

• FVC2004 DB1: This dataset is composed by 800 fingerprints from 100 fingers (8 impressions per443

finger) [37]. These image were captured with an optical sensor ”V300” by CrossMatch, resulting in444

images of 640 × 480.445

19



• FVC2006 DB2: The second FVC2006 dataset have 1680 fingerprints from 140 fingers (12 impressions446

per finger) [14]. The images where captured using an optical sensor, resulting in images of 400 × 560.447

Table 2: The datasets and indexing methods for which published results are available.

Dataset Methods with published results

NIST DB4

Germain et al. (1997) [15]

Bhanu and Tan (2003) [3]

Jiang et al. (2006) [21]

Gyaourova and Ross (2008) [17]

Capelli et al. (2011) [8]

Liu et al. (2012) [33]

NIST DB4 (Natural)

Lumuni et al. (1997) [34]

Capelli et al. (1999) [9]

Lee et al. (2005) [25]

Jiang et al. (2006) [21]

Li et al. (2006) [26]

Liu et al. (2006) [31]

Liu et al. (2007) [32]

Capelli et al. (2011) [8]

NIST DB14

Lumuni et al. (1997) [34]

Capelli et al. (1999) [9]

Capelli et al. (2002) [10]

Capelli et al. (2011) [8]

FVC 2000 DB2

De Boer et al. (2001) [5]

Jiang et al. (2006) [21]

Liang et al. (2006) [27]

Shuai et al. (2008) [44]

Cappelli et al. (2011) [8]

FVC 2000 DB3
Jiang et al. (2006) [21]

Capelli et al. (2011) [8]

FVC 2002 DB1

Feng and Cai (2006) [13]

Liang et al. (2007) [28]

Shuai et al. (2008) [44]

He et al. (2009) [18]

Capelli et al. (2011) [8]

Liu et al. (2012) [33]

FVC 2004 DB1
Liang et al. (2007) [28]

Zhang et al. (2008) [44]

In Table 2, we can see the indexing methods for which published results are available and the datasets448

in which they are reported.449

7.2. Preprocessing and thresholds450

To extract the features in our new algorithm, we use a minutia extraction method similar to the one451

reported in the state of the art [22]. This method computes black-white transition count around each point452

in the skeletonized image of each fingerprint. If the value of this count is 1 or 3, we will be in presence of453
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a termination or a bifurcation, respectively. In this way, the minutiae are located, and their directions are454

computed from the associated ridges. In order to eliminate noise, the minutiae that are in the border of455

the impressions or in bad quality areas (false minutiae) are eliminated. We use a method already described456

in the literature for finding bad quality areas, which is based on the coherence and orientation maps [41] .457

Also, we developed a simple method to extract ridge counters between minutiae.458

For testing our proposal, the thresholds described in section 6 are fixed to the following values: e1 = 2459

(two distortion errors, see definition 7), Eλ = 0.25, Eω = 60◦, eλ = 0.125, eω = 10◦, and et = 15 pixels (see460

definition 8).461

7.3. Evaluation of our proposal462

The Correct Index Power (CIP) is one of the most used and reliable measure for the evaluation of463

indexing algorithms accuracy. For this reason, in our experimentation the trade off between Penetration464

Rate (PR) and CIP is used to illustrate the results.465

Formally, we can define the Correct Index Power and the Penetration Rate as: CIP (N) = 100× c(N)/E466

and PR(N) = 100× N/E respectively, where E is the number of experiments, and c(N) is the number of467

times where the correct result is within the list with the first N hypothesis.468

In order to evaluate the impact of our contributions we have conducted some experiments in the FVC469

2006 DB2 dataset. In this way, we choose the first impression of each finger to conform the experimental470

collection with 100 fingerprints, while the other 11 prints of each finger are used as queries (1540 fingerprints471

are used as queries).472

In Fig. 5(a), we can see our approach evaluated using different methods to select the triangle set. In473

this experiment, everything was fixed with the exception of the criterion for choosing triangles. As we can474

see, the variant that use the expanded triangle set proposed by us is better than the others. This occurs475

because, in our proposal, we solve the problem generated by missing and spurious minutiae, and we also476

represent fingerprints with a linear number of triangles (see section 4).477

We also performed an exhaustive experimentation to prove the impact of our proposal in situations where478

some minutiae are missing, see Fig. 5(b). In order to simulate these conditions, we deliberately erase some479

of the minutiae obtained in the feature extraction process of each fingerprint. In this way, the following480

methodology was used: for each minutia we generate a random value between 0 and 1, that is used as the481

probability of keeping this minutia from the original minutia set. If this value is lesser than a predefined482

probability threshold p, the minutia is kept, otherwise it is removed. In Fig. 5(b), the results of these483

experimentations with different values of threshold p, and a value of penetration rate of 5% are shown.484

Thus, we empirically checked that the use of expanded triangles is the most immune option for facing the485

missing minutia distortions.486
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Figure 5: Results of different methods for triplets selection.
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In similar way, we tested our proposal for situations where some spurious minutiae are found. In this487

case, we added x false minutiae inside the area of each fingerprint. The coordinates and features of each488

false minutia are randomly generated. Some experimentations where conducted with different values of x489

and a penetration rate of 5%. The results are shown in Fig. 5(c). Thus, we can see that using expanded490

triangles we can achieve the best indexing results, under situations of appearance of spurious minutiae.491

On the other hand, we prepared another experiment to justify the generation of a geometric transforma-492

tion for each triangle side instead of a single one from the whole triangle, see Fig. 6(a). In this experiment,493

everything was fixed with the exception of the method for calculating set of transformations for each pair of494

triangles. Thus, we conclude that our proposal is a good choice for recovering index matches in fingerprint495

identification.496

Moreover, we conducted an experiment to evaluate our proposal with 4 different values for the threshold497

e1 (see definition 7). This threshold is very important because it has a great influence in the similarity498

function performance. In this experiment, everything was fixed with the exception of this threshold. As we499

can see in Fig. 6(b), the best accuracy was achieved with e1 = 2.500

Another experiment was done to prove the advantages of our defined similarity function between geo-501

metric transformations. In Fig. 6(c), we can appreciate our approach using the proposed similarity function502

and using fixed thresholds in order to decide if two transformations are similar. In the second case, instead503

of using weights to determine the recommendation score, a binary value is returned: 1 if the transformations504

are similar and 0 if they are not. Moreover, we include in this comparison the results of our approach but505

using the vote-based method for calculating such score. In this experiment, everything was fixed with the506

exception of the method for calculating the above mentioned score. The similarity function has a posi-507

tive impact in the accuracy of our algorithm because provides a value of closeness between transformation508

components, in fuzzy terms.509

Table 3: The number of elements in the sets Ti checked in FVC 2006 DB2.

Number of transformations Ti (Intervals) [1, 10] [11, 40] [41, 200] [201, . . .)

Wrong hits 96.16% 3.13% 0 0

Right hits 0.01% 0.06% 0.4% 0.25%

Total 96.17% 3.19% 0.4% 0.25%

The last experiment was focussed on analysing the computational complexity for calculating the recom-510

mendation scores during the last step of retrieval stage, see Table 3. This experiment was performed by511

counting the number of geometric transformations in each set Ti for all executions of line 4 of the algo-512

rithm 4, and distributing this value among the four intervals considered in Table 3. For example, in the513

96.17% of cases, the value of ti is lesser than 10, see the last row and second column of the table. Moreover,514

we also count the number of cases of wrong or right hits. A right hit refers to a case where the set Ti belong515

23



96

97

98

99

100

0 5 10 15 20 25 30

C
IP

(%
)

Penetra on rate (%)

Using transforma ons between sides 

(Proposed approach)

Using transforma ons between 

triangles

(a) Using different methods for calculating

geometric transformations.

94

95

96

97

98

99

100

0 5 10 15 20 25 30

C
IP

(%
)

Penetra on rate (%)

= 0

= 2 (Proposed approach)

= 4

= 6

e1

e1

e1

e1

(b) Using different values for e1.

90

92

94

96

98

100

0 5 10 15 20 25 30

C
IP

(%
)

Penetra on rate (%)

Using similarity func on (Proposed approach)

Using binary values

Using votes without geometric transforma ons

(c) Using different methods for calculating the

recommendation score.

Figure 6: Results of other experiments for evaluating our proposal.

24



76

79

82

85

88

91

94

97

100

0 5 10 15 20 25 30

C
IP

(%
)

Penetra on rate (%)

Proposed approach

Liu et al. (2012)

Cappelli et al. (2011)

Gyaourova and Ross (2008)

Jiang et al. (2006)

Bhanu and Tan (2003)

Germain et al. (1997)

(a) NIST DB4

86

88

90

92

94

96

98

100

0 5 10 15 20 25 30

C
IP

(%
)

Penetra on rate (%)

Proposed approach

Capelli et al. (2011)

Liu et al. (2007)

Jiang et al. (2006)

Liu et al. (2006)

Li et al. (2006)

Lee et al. (2005)

Cappelli et al. (1999)

Lumini et al. (1997)

(b) NIST DB4 (natural)

86

88

90

92

94

96

98

100

0 5 10 15 20 25 30

C
IP

(%
)

Penetra on rate (%)

Proposed approach

Cappelli et al. (2011)

Cappelli et al. (2002)

Cappelli et al. (1999)

Lumini et al. (1997)

(c) NIST DB14

Figure 7: Results in NIST databases.

to the template associated with the query; the other cases were called wrong hits. For example, there are516

not computed values greater than 41 for wrong hits, see second row and the last two columns of the table.517

In summary, we can conclude that the number of transformations in the sets Ti is very small, in almost all518

cases. Therefore, the computational cost for calculating recommendation score is quite insignificant. This519

experiment was repeated in all databases presented in section 7.1; however, the conclusion was the same in520

all of the tests. For this reason, we only include the results in FVC 2006 DB2.521

7.4. Comparison with other reported approaches522

The results reported in the NIST datasets have been obtained by using the first impressions to build the523

experimental collection, while the second prints are used as queries to test the indexing performance.524

In Fig. 7(a), Fig. 7(b) and Fig. 7(c) we can see that our method is worse than Capelli et al. [8] only with525

very small values of penetration rate: less than 3 in NIST DB4 and less than 1 in NIST DB4 (natural). All526
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Figure 8: Results in FVC databases.
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of the others algorithms are considerably less accurate than our approach.527

In the FVC datasets, the results reported by all methods except for Liang et al. [28] and our approach528

in Fig. 8(d), have been obtained by selecting one impressions randomly for each finger to conform the529

experimental collection with 100 fingerprints, while the other seven prints for each finger are used as queries530

(700 fingerprints are used as queries). In the case of FVC 2004, the results shown by Liang et al. [28] and our531

approach (see Fig. 8(d)) were obtained using an experimental collection conformed by randomly choosing532

3 impressions for each finger of the dataset while the other five prints for each finger are used as queries533

(500 fingerprints are used as queries). We adopt this experimental setup in order to show an impartial534

comparison between Liang et al. [28] and our proposal.535

In Fig. 8(c), we can appreciate that Liang et al. [28] has better performance than our proposal with536

penetration rate (PR) values higher than 15. However this algorithm shows poor results in the experiments,537

for smaller values of PR. In addition, the difference of methodology in the experiment may have influenced538

the results. Also, we can see that our proposal is slightly less accurate than Feng and Cai (2006) [13] with539

PR values higher than 10, but this method adopts other features based on ridge while our approach only540

uses ridge counters.541

The Fig. 8(a), Fig. 8(b) and Fig. 8(d), show the superior performance of our approach over most of the542

state of the art methods in FVC2000 DB2, FVC2000 DB3, and FVC2004 DB1 datasets. In the case of543

De Boer et al. [5], the good reported accuracy was obtained by combining three different algorithms. Also544

in one of these algorithms, in the 13 percent of the dataset the singular points where manually corrected545

and 1 percent of the dataset was eliminated since no registration point could be found. Our proposal also546

outperforms the method of Liang et al. [27] for values of penetration rate less than 18.547

8. Conclusions548

In this paper, a new fingerprint indexing algorithm based on minutia details and triplets is proposed.549

It has been shown that this algorithm is able to search a fingerprint dataset more efficiently and stably550

than previous triangle-based algorithms. Also, a new fingerprint representation is defined based on the551

Delaunay triangulations and triangular hulls. This representation is very robust under situations in which552

some minutiae are not detected. Also, the number of triangles of this representation is linear with respect553

to the number of minutiae in the fingerprint.554

The proposed approach uses robust features combined with a new defined mechanism for dealing with555

the effects of noise, based on redundant feature vectors. A novel recovery strategy based on geometric556

transformations is also introduced. In this sense, a similarity function between geometric transformations is557

defined. Several experiments have been conducted in well known FVC and NIST databases. The obtained558

results show that our approach outperforms the majority of the best algorithms reported in the literature.559
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Only in a few cases the results reported by other methods are comparable with our proposal. This is due560

to the use of ridge based features or combinations of different methods.561

Future work will be devoted to define a new representation of fingerprints more tolerant to elastic562

distortions, by combining higher order Delaunay triangles with our proposal. This will allow us to have an563

even more robust algorithm capable of dealing with displaced minutiae, using a relative small number of564

triangles.565

References566

[1] G. Bebis, T. Deaconu, and M. Georgiopoulos. Fingerprint Identification Using Delaunay Triangulation. In Proceedings567

International Conference Information Intelligence and Systems (ICIIS’99), pages 452–459, Maryland, USA, 1999.568

[2] M. Berg, M. Krevelt, M. Overmars, and O. Scharzkopf. Computational Geometry (Algorithms and Applications), Chapter569

9. Springer-Verlag, Berlin Heidelberg, 1997.570

[3] B. Bhanu and X. Tan. Fingerprint Indexing Based on Novel Features of Minutiae Triplets. IEEE Transactions on Pattern571

Analysis and Machine Intelligence, 25(5): 616–622, 2003.572

[4] S. Biswas, N. Ratha, G. Aggarwal, and J. Connell. Exploring Ridge Curvature for Fingerprint Indexing. In Proceedings of573

the 2nd IEEE International Conference on on Biometrics: Theory, Applications and Systems, pages 1–6, Virginia, USA574

2008.575

[5] J.D. Boer, A.M. Bazen, and S.H. Cerez. Indexing Fingerprint Database Based on Multiple Features. In Proceedings of the576

12th Annual Workshop on Circuits, pages 300–306, 2001.577

[6] G. Bojadziev and M. Bojadziev. Fuzzy sets, fuzzy logic and applications. World Scientific, London, 1995.578

[7] F.C. Botelho, Y. Kohayakawa, and N. Ziviani. A Practical Minimal Perfect Hashing Method. In Proceedings of the 4th579

International Workshop on Efficient and Experimental Algorithms (WEA’05), pp. 488–500, 2005.580

[8] R. Cappelli, M. Ferrara, and D. Maltoni. Fingerprint Indexing Based on Minutia Cylinder-Code. IEEE Transactions on581

Pattern Analysis and Machine Intelligence, 33(5): 1051–1057, 2011.582

[9] R. Cappelli, A. Lumini, D. Maio, and D. Maltoni. Fingerprint Classification by Directional Image Partitioning. IEEE583

Transactions on Pattern Analysis and Machine Intelligence, 21(5): 402–421, 1999.584

[10] R. Cappelli, D. Maio, and D. Maltoni. A Multi-Classifier Approach to Fingerprint Classification. Pattern Analysis and585

Applications, 5(2): 136–144, 2002.586

[11] R. Cappelli, M. Ferrara. A Fingerprint Retrieval System Based on Level-1 and Level-2 Features. Expert Systems with587

Applications, Vol. 39, Issue 12, pages 10465-10478, Sept. 2009.588

[12] K. Choi, D. Lee, S. Lee, and J. Kim. An Improved Fingerprint Indexing Algorithm Based on the Triplet Approach. In589

Proceedings of the 4th International Conference Audio and Video Based Biometric Person Authentication (AVBPA’03),590

pages 584–591, 2003.591

[13] J. Feng and A. Cai. Fingerprint Indexing Using Ridge Invariants. In Proceedings 18th International Conference on Pattern592

Recognition (ICPR’06), Vol. 4, pages 433-436, Hong Kong, 2006.593

[14] Fingerprint verification Competition 2006, [WWW document] http://bias.csr.unibo.it/fvc2006, (Accessed 17th October594

2011)595

[15] R.S. Germain, A. Califano, and S. Colville. Fingerprint Matching Using Transformation Parameter Clustering. IEEE596

Computing in Science and Engineering, 4(4): 42–49, 1997.597

[16] M.R. Girgisa, A.A. Sewisyb, R.F. Mansourb A robust method for partial deformed fingerprints verification using genetic598

algorithm. Expert Systems with Applications, Vol. 36, Issue 2, pages 20082016, March 2009.599

28



[17] A. Gyaourova and A. Ross. A Novel Coding Scheme for Indexing Fingerprint Patterns. In Proceedings of the 7th600

International Workshop on Statistical Pattern Recognition (S+SSPR), pages 765–774, 2008.601

[18] S. He, C. Zhang, and P. Hao. Clustering-Based Descriptors for Fingerprint Indexing and Fast Retrieval. In Proceedings602

of the 9th Asian Conference on Computer Vision (ACCV’09), Part I, pages 354–363, 2009.603

[19] C. Hung, J. Liung, C. Yi Optical sensor measurement and biometric-based fractal pattern classifier for fingerprint604

recognition. Expert Systems with Applications, Vol. 38, Issue 5, pages 50815089, May 2011.605

[20] T.Y. Jea and V. Govindaraju. A minutia-based partial fingerprint recognition system. Pattern Recognition, 38(10):606

1672–1684, 2005.607

[21] X. Jiang, M. Liu, and A.C. Kot. Fingerprint Retrieval for Identification. IEEE Transactions on Information Forensics608

and Security, 1(4): 532–542, 2006.609

[22] S. Kasaei and B. Boashash. Fingerprint feature extraction using block-direction on reconstructed images. In Proceedings610

of IEEE Region Conference on Speech and Image Technologies for Computing and Telecommunications (TENCON’97),611

pages 303–306, 1997.612
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