
A New Algorithm for Mining Frequent Connected

Subgraphs based on Adjacency Matrices

Andrés Gago-Alonso1,2,∗ Abel Puentes-Luberta1,3

Jesús A. Carrasco-Ochoa2 José E. Medina-Pagola1

José Fco. Mart́ınez-Trinidad2

1 Advanced Technologies Application Center

7a] 21812, Siboney, Playa, CP: 12200, Havana, Cuba

{agago,apuentes,jmedina}@cenatav.co.cu
2 Computer Science Department

National Institute of Astrophysics, Optics and Electronics

Luis Enrique Erro] 1, Sta. Maŕıa Tonantzintla, CP: 72840, Puebla, México

{ariel,fmartine}@inaoep.mx
3 Faculty of Mathematics and Computer Sciences, University of Havana

San Lazaro Avenue, Felipe Poey Building, Vedado, CP: 10400, Havana, Cuba

July 9, 2009

Abstract

Most of the Frequent Connected Subgraph Mining (FCSM) algorithms
have been focused on detecting duplicate candidates using canonical form
(CF) tests. CF tests have high computational complexity, which affects
the efficiency of graph miners. In this paper, we introduce novel properties
of the canonical adjacency matrices for reducing the number of CF tests in
FCSM. Based on these properties, a new algorithm for frequent connected
subgraph mining called grCAM is proposed. The experiments on real
world datasets show the impact of the proposed properties in FCSM.
Besides, the performance of our algorithm is compared against some other
reported algorithms.

Keywords: data mining, graph mining, frequent subgraphs, labeled graphs, canonical
adjacency matrices

1 Introduction

Data mining over graph datasets is becoming increasingly important since ad-
vances in collecting and storing data have produced an explosive growth in the
amount of available structured data. This situation has boosted the necessity

∗Corresponding author

1

of new algorithms to transform this big amount of data in useful information
for decision makers. The development of such algorithms requires techniques
that usually need long time and a lot of memory. One of these techniques is the
frequent connected subgraph mining (FCSM) which is defined as the process of
finding connected subgraphs that frequently occur in a collection of graphs.

Recently, FCSM has become in an interesting theme in data mining with
wide applications [6], including mining substructures from chemical compound
databases, XML documents, citation networks, biological networks, and so
forth. Labeled graphs can be used to model relations among data in the afore-
mentioned applications because labels can represent attributes of entities and
relations among themselves [8]. As a consequence, several algorithms have been
developed for FCSM in collections of labeled graphs.

The first graph mining system, called SUBDUE, was proposed by Holder et
al. [7]. This system is based on minimum description length and background
knowledge. Another system for frequent subgraph mining in chemical com-
pounds datasets was developed using inductive logic programming [13]. How-
ever, the first algorithm for finding all frequent subgraphs (connected or uncon-
nected) in a collection of labeled graphs was AGM [10], followed by FSG [12]
and AcGM [11], which were designed for mining all frequent connected sub-
graphs. These algorithms are similar to the original Apriori algorithm [1] for
mining frequent itemsets.

Later, pattern growth based algorithms such as gSpan [18], MoFa [3], FF-
SM [9], Gaston [14] and gRed [5] were developed. Previous comparative studies
have shown that the pattern growth based algorithms have better performance
than the Apriori based ones [15, 17].

The emergence of duplicate candidates during the enumeration process is
one of the major problems in all recent approaches. Duplicate candidates are
treated by representing the subgraphs with a unique code called canonical form
(CF). The canonical adjacency matrix (CAM) is a CF used in FCSM [9, 10,
11, 12]. Candidate enumeration strategies are commonly defined by means of
these representations, trying to avoid non-canonical forms by performing CF
tests which have very high computational complexity [2].

In this paper, we propose a non-usefulness property that allows to know
the results of some CF tests in constant time; thus, it reduces the size of the
candidate space. This property does not remove all the duplicate candidates;
therefore, CF tests are required for non-filtered candidates. For this reason, we
also propose properties that allow to reduce the number of such expensive tests
by reusing previous test results for predicting new results without performing a
test. Additionally, this paper introduces a new algorithm called grCAM (graph
mining by reducing CAM tests) based on these properties. This algorithm
uses the non-usefulness property to reduce the number of candidate graphs and
applies the reuse properties for reducing the number of CF tests.

The basic outline of this paper is as follows. Section 2 provides some basic
concepts; it also contains the related work. The adjacency matrix properties
are introduced, discussed, and tested in section 3; this section also introduces
the grCAM algorithm. The experimental results over real world datasets and a

2

comparison against other FCSM algorithms are presented in section 4. Finally,
conclusions of the research and some ideas about future directions are exposed
in section 5.

2 Preliminaries

In this paper, we focus on labeled simple undirected graphs. The formal defini-
tion of this type of graphs is as follows.

A labeled graph is a 4-tuple, G = 〈V, E, L, l〉, where V is a set whose elements
are called vertices, E ⊂ {e |e ⊂ V, |e| = 2} is a set whose elements are called
edges, each edge is a set with exactly two vertices, L is a set of labels and
l : V ∪ E → L is a labeling function for assigning labels to vertices and edges.

Let G1 and G2 be two graphs having the same set of labels L and the same
labeling function l. We say that G1 is a subgraph of G2 if V (G1) ⊆ V (G2) and
E(G1) ⊆ E(G2). In this case, we use the notation G1 ⊆ G2.

For mining over collections of labeled graphs, the frequency of a candidate is
calculated using subgraph isomorphism tests. We say that f is an isomorphism
between G1 and G2, if f : V (G1) → V (G2) is a bijective function where lG1(v) =
lG2(f(v)) for each vertex v ∈ V (G1), {f(u), f(v)} ∈ E(G2) and lG1({u, v}) =
lG2({f(u), f(v)}) for all edge {u, v} ∈ E(G1). A subgraph isomorphism from G1

to G2 is an isomorphism from G1 to a subgraph of G2.
A path in G is a sequence of vertices v1, v2, . . . , vk with {vi, vi+1} ∈ E(G)

for each i = 1, . . . , k− 1. In this case we say that v1 and vk are connected. The
graph G is connected if for all vi, vj ∈ V (G), i 6= j, vi and vj are connected by
at least one path.

Let D = {G1, G2, . . . , G|D|} be a collection of labeled graphs and let δ be
a predefined threshold of frequency. The support of a graph g in D is defined
as the number of graphs Gi ∈ D such that there is a subgraph isomorphism
from g to Gi. We use the notation σ(g, D) to refer to the support of g in
the collection D. A graph g is frequent in the collection D if σ(g,D) ≥ δ.
Frequent connected subgraph mining (FCSM) is the process of finding all frequent
connected subgraphs in a collection of graphs.

2.1 Canonical Adjacency Matrix

A graph can be represented by its canonical adjacency matrix. This kind of
canonical representation has been used in several works for graph mining [9, 10,
11, 12].

Let G be a labeled graph with |V (G)| = n and let v1, v2, . . . , vn be a permu-
tation of the vertices in V (G), the adjacency matrix of G regarding this permu-
tation is a lower triangular matrix X = (xi,j)n

i,j=1 where for each 1 ≤ i ≤ j ≤ n:

xi,j =

l(vi) if i = j (vertex entry)
l(e) if e = {vi, vj} ∈ E (edge entry)
0 if {vi, vj} /∈ E (non-edge entry)

3

The adjacency matrix is not unique for G. Since each diagonal entry repre-
sents a vertex in the graph, each permutation of the set of vertices corresponds
to a different adjacency matrix. There are O(n!) different adjacency matrices
for G. An example of two different adjacency matrices for a same graph is shown
in Fig. 1.

In order to achieve a unique representation for G, we define a code of adja-
cency matrices which provides a total order among all adjacency matrices. The
code of an adjacency matrix X is built concatenating lower triangular rows of
X, see (1).

code(X) = x1,1x2,1x2,2x3,1x3,2x3,3 . . . xn,n (1)

For example, the codes of the matrices shown in Fig. 1 (A) and (B) are
b1a12a001a and a1a02a011b respectively. Codes are strings of labels in L(G)∪
{0}. An order among the labels in L(G) is assumed. This order is defined
according to the real application. The edge absence label 0 is considered the
smallest label in the string label order. Therefore, the standard lexicographic
order ≺ could be used to define a total order among the codes. For example,
we have a1a02a011b ≺ b1a12a001a with the codes of the matrices in Fig. 1.

The canonical form (CF) of G is usually considered as the maximal code
among all its possible codes. Thus, the canonical adjacency matrix (CAM) of G
is the adjacency matrix of G whose code has the CF. The canonical adjacency
matrix is unique for a graph G; that is, two isomorphic graphs have the same
CAM.

An adjacency matrix X is an inner matrix if it has at least two edge entries
in the last row. Otherwise, X is an outer matrix. For example, the matrices
shown in Fig. 1 (A) and (B) are outer and inner respectively.

The maximal proper submatrix of an inner matrix X is defined as the matrix
obtained from X by removing the last edge entry (putting 0 in the last edge
entry). If X is a outer matrix then its maximal proper submatrix is built from X
by removing the last row and the last column. The maximal proper submatrix
of an 1× 1 matrix is the empty matrix (0× 0 degenerated matrix).

Thus, for each non-empty matrix X there is only one matrix Y such that Y
is a maximal proper submatrix of X. Besides, the maximal proper submatrix
of a CAM is also a CAM of a connected graph [9]. Therefore, we can build a
rooted tree whose nodes are the CAMs of all connected subgraphs of all graphs
in a collection D. This tree is called the CAM tree of D. The root of the CAM
tree is the empty matrix and the parent/child relationship is defined by the
maximal proper submatrix as follow. Y is the parent of X if Y is a maximal
proper submatrix of X; in this case, X is a child of Y . For example, the CAM
tree of the graph collection D showed in Fig. 3 is the tree showed in Fig. 4; it
is built using the 60% of the collection size as support threshold.

Another important concept is the suboptimal CAM. A matrix X is a sub-
optimal CAM if its maximal proper submatrix is a CAM. By this definition, if
X is a CAM then it is also a suboptimal CAM. When a suboptimal CAM X is
not a CAM, we say that X is a proper suboptimal CAM. Thus, the suboptimal
CAMs of a graph collection D could be organized in a tree in a similar way to

4

the CAM tree. This tree is called suboptimal CAM tree.

2.2 Mining with Canonical Adjacency Matrices

FFSM algorithm [9] is the most efficient algorithm for FCSM among those using
CAM for representing graphs [15]. FFSM finds all frequent connected subgraphs
(FCS) in a collection D by exploring the CAM tree of D. During the exploration,
the CAM tree is built dynamically using two matrix operations called join and
extension. These operations are defined as follows.

The join operation produces one or two graph candidates starting from
two graphs whose corresponding adjacency matrices A = (ai,j)n

i,j=1 and B =
(bi,j)m

i,j=1 share the same maximal proper submatrix C. This operation is de-
noted by join(A,B) and it is defined as follows.

Without loss of generality, assume that n ≤ m ≤ n + 1. Let an,h and bm,k

be the last edge entries of A and B, respectively. join(A,B) is a set of matrices
such that 0 ≤ |join(A,B)| ≤ 2 depending on the characteristics of the graphs
represented by A and B as states the following conditions.

Condition 1: Suppose that n = m, an,h = bn,k and h 6= k. Let D =
(di,j)n

i,j=1 be the matrix obtained directly from A putting dn,k = bn,k; that is

di,j =

bn,k i = n, j = k

ai,j otherwise
.

In this case, D ∈ join(A,B).
Condition 2: Suppose that B is an outer matrix. Let E = (ei,j)n+1

i,j=1 be
the matrix where

ei,j =

ai,j 1 ≤ i, j ≤ n
bm,k i = n + 1, j = k
bm,m i = j = n + 1

0 otherwise

.

In this case, E ∈ join(A,B).
If conditions 1 and 2 are false then join(A,B) = ∅. If only one of these

conditions is true then join(A,B) has only one element. If both conditions are
true then join(A,B) has two elements. In the CAM tree of Fig. 5, we can see
examples of these three cases.

The extension operation obtains graph candidates from a graph by intro-
ducing one edge. New edges are introduced connecting the last node in a CAM
with an additional vertex. The set extension(A) of the extensions of a n × n
matrix A is a set of (n+1)× (n+1) matrices obtained from A by adding a new
edge.

The join and extension operations allow enumerating all the nodes in a
suboptimal CAM tree [9].

Let X be a CAM, let C(X) denote the children of X in the suboptimal CAM
tree of a graph collection D, and suppose that Y ∈ C(X) is an n × n matrix.

5

If n = 1, then C(Y) = extension(Y) since 1 × 1 matrices are not joinable. If
n > 1, then

C(Y) =

 ⋃

B∈C(X)

join(Y, B)

 ∪ extension(Y), (2)

the elements of C(Y) are obtained by the join and extension operations. The
general description of the FFSM algorithm is as follows:

Procedure FFSM(D, δ, S)

Input: D - graph collection, δ - support threshold
Output: S - mining results

S(1) ← all CAMs of frequent vertices in D (1× 1 matrices);1

S(2) ← all CAMs of frequent edges in D (2× 2 matrices);2

S ← S(1) ∪ S(2);3

FFSM-Explore(D, δ, S(2), S);4

Procedure FFSM-Explore(D, δ, C, S)

Input: D - graph collection, δ - support threshold, C - a suboptimal
CAM list

Output: S - mining results

forall X ∈ C do1

if isCAMTest(X) then2

S ← S ∪ {X};3

C(X) ← the children of X which are calculated by means of (2)4

using C and D;
Remove from C(X) the non-frequent CAMs;5

FFSM-Explore(D, δ, C(X), S);6

end7

end8

First, the procedure FFSM calculates frequent vertices and edges. Frequent
edges are the starting point for traversing the suboptimal CAM tree of a graph
collection D using the procedure FFSM-Explore.

The procedure FFSM-Explore uses the join and extension operations (see
line 4) for candidate enumeration. The proper suboptimal CAMs are dupli-
cated candidates but they are needed for the join operations. Proper subopti-
mal CAMs are ignored after the corresponding join operations by performing
a CF tests (see line 2). During the traversal, FFSM maintains data structures
(embedding structures [9]) for indexing candidate occurrences in the collection
D. These structures are used to optimize the extension operations and they are
also used for calculating the frequency of the candidates. Thus, non-frequent
CAMs are pruned from the suboptimal CAM tree (see line 5) since they cannot
generate useful candidates.

6

3 Frequent connected subgraph mining

In this section, new CAM properties and a novel approach for FCSM using these
properties to reduce the number of CAM tests are introduced.

3.1 Novel Properties of Adjacency Matrices

Let X be an n×n CAM. The elements of C(X) obtained by the join condition 1
are n× n matrices and the other elements (obtained by the join condition 2 or
extension) are (n+1)× (n+1) matrices. Thus, the set C(X) can be partitioned
into two sets C(n)(X) and C(n+1)(X) containing the n×n and (n+1)× (n+1)
matrices respectively; that is, C(X) = C(n)(X) ∪ C(n+1)(X).

The set C(n)(X) can be partitioned into several sets

C(n)(X) =
n−1⋃

j=1

C
(n)
j (X), (3)

where C
(n)
j (X) contains the children of X whose last edge entry lies in the j-th

column.
On the other hand, C(n+1)(X) can also be partitioned as follow

C(n+1)(X) =
⋃

v∈L

n⋃

j=1

C
(n+1)
v,j (X), (4)

where L is the set of labels in the last vertices of the matrices in C(n+1)(X),
and C

(n+1)
v,j (X) contains the children of X with last vertex label equal to v and

last edge entry in the j-th column.
For example, Fig. 6 shows some elements of C

(n+1)
a,1 (X), Fig. 7 shows elements

of C
(n+1)
b,2 (X), and Fig. 8 shows some elements in the sets C

(n+1)
a,2 (X), C

(n+1)
b,2 (X),

C
(n+1)
c,2 (X), and C

(n+1)
d,2 (X).

The first properties presented in this section are called reuse properties since
they allow to reuse previous CF test results for predicting new results without
performing a test. Theorems 1 and 2 are called the reuse properties for the last
edge entry.

Theorem 1 works when the result of a CF test in a matrix Y is true. It
allows to reuse this fact for predicting the result of CF tests in other matrices
whose difference with Y is only one edge entry.

Theorem 1 Let Y = (yi,j)n
i,j=1 be a CAM where its last edge entry is yn,b

(yn,b > 0). Suppose that Z = (zi,j)n
i,j=1 is an adjacency matrix where zi,j = yi,j

for all i 6= n and j 6= b. If 0 < zn,b < yn,b then Z also is a CAM.

Proof. Suppose that Z is not a CAM; then, there is a permutation P among
the vertices of Z such that we obtain a new matrix1 P (Z) where code(Z) ≺

1In general, we will use the notation P (A) for referring to the matrix obtained from the
matrix A making the permutation P .

7

code(P (Z)). Assume that

code(P (Z)) = z′1z
′
2 . . . z′t

code(Z) = z1z2 . . . zt
,

where t = n(n + 1)/2. Let h be the minimum integer 1 ≤ h ≤ t such that
z′h > zh, let k and k′ be the positions of zn,b in the codes code(Z) and code(P (Z))
respectively. Thus, we have two cases:

• If h < k′ then the entry zn,b in Z does not determine that code(P (Z)) >
code(Z). Therefore, code(P (Y)) > code(Y) since Y and Z are the same
matrix except for the entry in the (n, b) position. It is a contradiction
with the hypothesis that Y is a CAM.

• If h > k′ then zk′ = z′k′ = zn,b < yn,b. In this case, if we apply P over Y
we obtain that code(P (Y)) > code(Y) since yk′ = zk′ < yn,b = y′k′ (where
y1y2 . . . yt and y′1y

′
2 . . . y′t are the codes of Y and P (Y) respectively). It is

a contradiction with the hypothesis that Y is a CAM.

• If h = k′ then zh < zn,b < yn,b. In this case, if we apply P over Y we
obtain that code(P (Y)) > code(Y) since yh = zh < yn,b = y′h. It is a
contradiction with the hypothesis that Y is a CAM.

Therefore, Z is a CAM. ut
Similar results are showed in theorem 2 which works when the result of a

CF test in a matrix Y is false.

Theorem 2 Let Y = (yi,j)n
i,j=1 be a proper suboptimal CAM and its last edge

entry is yn,b (yn,b > 0). Suppose that Z = (zi,j)n
i,j=1 is an adjacency matrix

where zi,j = yi,j for all i 6= n and j 6= b. If zn,b > yn,b then Z is not a CAM.

Proof. Suppose that Z is a CAM; then, by theorem 1 the matrix Y is a CAM
and it is a contradiction. Therefore, Z is not a CAM and the proof concludes.
ut

The theorems 1 and 2 are applicable to matrices Y and Z which lie in the
same partition subset C

(n)
j (X) or C

(n+1)
v,j (X) where X is the maximal proper

submatrix of Y and Z (see Fig. 6 and Fig. 7).
The theorems 3 and 4 are called the reuse properties for the last vertex entry.

They allow to reuse previous results when the matrices differ in only one vextex
entry.

Theorem 3 Let Y = (yi,j)n
i,j=1 be a CAM and let Z = (zi,j)n

i,j=1 be a adjacency
matrix where zi,j = yi,j for all i 6= n and j 6= n. If 0 < zn,n < yn,n then Z also
is a CAM.

Proof. Suppose that Z is not a CAM; then, there is a permutation P among
the vertices of Z such that code(Z) ≺ code(P (Z)). Assume that

code(P (Z)) = z′1z
′
2 . . . z′t

code(Z) = z1z2 . . . zt
,

8

where t = n(n+1)/2. Let h be the minimum integer 1 ≤ h ≤ t such that z′h > zh,
let k′ be the position of zn,n in the code code(P (Z)) after the permutations.
Thus, we have two cases:

• If h < k′ then the entry zn,b in Z does not determine that code(P (Z)) >
code(Z). Therefore, code(P (Y)) > code(Y) since Y and Z are the same
matrix except for the entry in the (n, n) position. It is a contradiction
with the hypothesis that Y is a CAM.

• If h > k′ then zk′ = z′k′ = zn,n < yn,n. In this case, if we apply P over Y
we obtain that code(P (Y)) > code(Y) since yk′ = zk′ < yn,n = y′k′ (where
y1y2 . . . yt and y′1y

′
2 . . . y′t are the codes of Y and P (Y) respectively). It is

a contradiction with the hypothesis that Y is a CAM.

• If h = k′ then zh < zn,n < yn,n. In this case, if we apply P over Y we
obtain that code(P (Y)) > code(Y) since yh = zh < yn,n = y′h. It is a
contradiction with the hypothesis that Y is a CAM.

Therefore, Z is a CAM. ut
Theorem 4 Let Y = (yi,j)n

i,j=1 be a proper suboptimal CAM. Suppose that
Z = (zi,j)n

i,j=1 is an adjacency matrix where zi,j = yi,j for all i 6= n and j 6= n.
If zn,n > yn,n then Z is not a CAM.

Proof. Suppose that Z is a CAM; then, by theorem 3 the matrix Y is a CAM
and it is a contradiction. Therefore, Z is not a CAM and the proof concludes.
ut

The theorems 3 and 4 are applicable to matrices Y and Z which lie in
different subsets C

(n+1)
(yn,n),j(X) and C

(n+1)
(zn,n),j(X) with the same last edge entry

position j, where X is the maximal proper submatrix of Y and Z (see Fig. 8).
Another interesting property of the adjacency matrices called non-usefulness

property is showed in the theorem 5. It is an example of a sufficient condition
for guaranteeing that a suboptimal CAM is proper suboptimal CAM.

Theorem 5 Let X = (xi,j)n
i,j=1 be a CAM where n > 1 and let Y = (yi,j)n+1

i,j=1

be an adjacency matrix such that:

yi,j =

xi,j 1 ≤ i, j ≤ n
e i = n + 1, j = a
v i = j = n + 1
0 otherwise

where e > 0 and v > 0 are labels. If x1,1x2,1 ≺ ve then Y is not a CAM and
any join or extension involving Y does not produce CAM matrices.

Proof. From a permutation of the vertices of Y starting with the current vertices
n+1 and a in this order, we obtain an adjacency matrix Y ′ such that code(Y ′) >
code(Y). Thus, Y is not a CAM. Finally, the same arguments ensure that any
matrix obtained from Y will be not a CAM. ut

The non-usefulness property allow to reduce the size of suboptimal CAM
trees during FCSM.

9

3.2 The grCAM algorithm

The FFSM algorithm detects duplicate candidates by performing a CF test for
each frequent and sub-optimal matrix candidate (see line 2 of the FFSM-Explore
procedure in section 2.2). In this section, the algorithm grCAM (graph mining
by reducing CAM tests) is introduced, including a novel strategy to reduce the
number of such tests using the properties proposed in section 3.1.

In the FFSM-Explore procedure, the list C contains candidates to be FCS
and a CF test is performed for each one of them. The first time, C contains
2 × 2 adjacency matrices representing frequent edges. After, C contains N
adjacency matrices with the same n× n maximal proper submatrix X (that is
C = C(X)); therefore, we could modify the FFSM-Explore procedure using the
proposed properties to reduce the number of CF tests.

Taking into account that the non-usefulness property can be verified in con-
stant time, it could be used inside the pattern growth process (see line 4 of
the FFSM-Explore). Let C̄(X) ⊂ C(X) be the set containing the useful candi-
dates after applying the non-usefulness property and suppose that N̄ = |C̄(X)|
(notice that N̄ ≤ N). This process is called pre-filtering.

The reuse properties could be used to reduce the number of CF tests starting
from the useful candidate set C̄(X) in a more efficient way than the one used
in FFSM. This procedure called post-calculation is as follows.

In post-calculation, the result of the corresponding CF test for each Y ∈
C̄(X) is calculated and stored. The reuse properties use those results for avoid-
ing unnecessary tests.

The set C̄(X) can be partitioned according to (3) and (4) as C̄(X) =
C̄(n)(X) ∪ C̄(n+1)(X) where:

C̄(n)(X) =
n−1⋃

j=1

C̄
(n)
j (X),

and

C̄(n+1)(X) =
⋃

v∈L

n⋃

j=1

C̄
(n+1)
v,j (X).

Let M be one of the sets C̄
(n)
j (X) or C̄

(n+1)
v,j (X) and suppose that M is

sorted according to the lexicographic order ≺ (see section 2.1). From the reuse
properties for the last edge entry (theorems 1 and 2), we can conclude the
following two statements:

1. if there are CAMs in M then they are at the beginning of M ;

2. if there are non CAMs in M then they are at the end of M .

Thus, the boundary between CAMs and non CAMs can be detected using a
binary search. Therefore, the number of CF tests needed to detect this boundary
is less than log2(|M |) + 1. This process for reducing the number of CF tests is

10

called internal reusing process since it allows to reuse previous CF test results
inside each C̄

(n)
j (X) or C̄

(n+1)
v,j (X).

Let j be an integer such that 1 ≤ j ≤ n and consider the sets

C̄
(n+1)
v1,j (X), C̄(n+1)

v2,j (X), . . . , C̄(n+1)
vh,j (X)

which are used for partitioning C̄(n+1)(X) with the same last edge entry j and
different last vertex entry labels v1 < v2 < . . . < vh.

First of all, the internal reusing process is performed for C̄
(n+1)
v1,j (X) and

C̄
(n+1)
vh,j (X) (the first and the last sets). Let α1 be the highest last edge entry

label in C̄
(n+1)
v1,j (X) such that its corresponding matrix is a CAM and let βh be

the lowest last edge entry label in C̄
(n+1)
vh,j (X) such that its corresponding matrix

is not a CAM. The theorem 3 ensures that any matrix in the considered sets
with last edge entry label less than α1 is a CAM. The theorem 4 ensures that
any matrix in the considered sets with last edge entry label greater than βh

is not a CAM. Thus, the reuse properties for the vertex entry can be used to
reduce the number of CF tests.

Next, the internal reusing process is performed for C̄
(n+1)
v2,j (X) and C̄

(n+1)
vh−1,j(X)

(the second and the penultimate sets) considering only the matrices whose last
edge entry label is less than α1 and greater than βh. Thus, new values α2 and
βh−1 are calculated in a similar way. These steps are repeated until all the sets
are analyzed. This process is called external reusing process since it allows to
reuse previous CT test results among different sets C̄

(n+1)
v,j (X). The external

reusing process must be performed for each 1 ≤ j ≤ n.
The internal and external reusing processes integrate the post-calculation

procedure.
The following pseudo-code contains the general description of the grCAM

algorithm and it shows the use of pre-filtering and post-calculation procedures
to reduce the number of CF tests.

Procedure grCAM(D, δ, S)

Input: D - graph collection, δ - support threshold
Output: S - mining results

S(1) ← all CAMs of frequent vertices in D (1× 1 matrices);1

S(2) ← all CAMs of frequent edges in D (2× 2 matrices);2

S ← S(1) ∪ S(2);3

grCAM-Explore(D, δ, S(2), S);4

11

Procedure grCAM-Explore(D, δ, C, S)

Input: D - graph collection, δ - support threshold, C - a suboptimal
CAM list

Output: S - mining results

forall X ∈ C do1

if X.isCAM then2

S ← S ∪ {X};3

C̄(X) ← the children of X filtered by non-usefulness property4

(pre-filtering);
Remove from C(X) the non-frequent CAMs;5

Apply the post-calculation procedure to calculate Z.isCAM for6

each Z ∈ C(X);
grCAM-Explore(D, δ, C(X), S);7

end8

end9

The procedure grCAM calculates frequent vertices and edges. Frequent edges
are the starting point for traversing the suboptimal CAM tree of a graph col-
lection D using the procedure grCAM-Explore.

The procedure grCAM-Explore uses the CAM matrix operations for candi-
date enumeration and it includes the above described pre-filtering and post-cal-
culation procedures for reducing the number of CAM tests. Proper suboptimal
CAMs are not considered in the mining results since they represent duplicate
candidates. In grCAM, some non-useful candidates are filtered during the pat-
tern growth process (see line 4) using the above mentioned pre-filtering. Dur-
ing the traversal, embedding structures are maintained for each candidate and
they are used for indexing the candidate occurrences in the collection D as in
FFSM [9]. Non-frequent CAMs are pruned from the suboptimal CAM tree (see
line 5) since they cannot generate useful candidates. The post-calculation pro-
cedure is used to determine if each candidate matrix is a CAM or not, which
reduces the number of CF tests.

It is important to highlight that the pre-filtering and post-calculation proce-
dures introduced in grCAM can be also introduced in any other FCSM algorithm
based on adjacency matrices.

3.3 General considerations of grCAM

Let N and N be the number of candidates of the list C(X) during an execution of
the procedures FFSM-Explore and grCAM-Explore respectively. In the previous
section, we have shown that N ≤ N since the pre-filtering stage in grCAM could
reduce the number of candidates.

The internal reusing process without considering the external reusing process
allows to measure the expected number of CF tests needed to process the list C
in the worst case. That is, when the external reusing process does not reduce

12

the number of CF tests. Thus, the number of CF tests is less than:

K̂ =
n−1∑

j=1

(log2 |C̄(n)
j (X)|+ 1) +

∑

v∈L

n∑

j=1

(log2 |C̄(n+1)
v,j (X)|+ 1). (5)

Since log2(x) : [1, +∞) → [0,+∞) is a convex function, (5) can be transformed
in:

K̂ ≤ P̂ log2

n−1∑

j=1

|C̄(n)
j (X)|+

∑

v∈L

n∑

j=1

|C̄(n+1)
v,j (X)|

 /P̂

 + P̂ . (6)

where P̂ = n − 1 + n|L|. Since the sum of the cardinalities of these sets is the
cardinality of C(X), then (6) can be transformed in:

K̂ ≤ P̂ log2(N̄/P̂) + P̂ . (7)

In the best case, the external reusing process allows to remove all CF tests
after the first step. Since in the first step only two sets are checked, we can
conclude that in the best case the number of CF tests is less than:

Ǩ =
n−1∑

j=1

(log2 |C̄(n)
j (X)|+ 1) +

n∑

j=1

(log2 |C̄(n+1)
v1,j (X)|+ log2 |C̄(n+1)

vl,j
(X)|+ 2).

In a similar way, we obtain:

Ǩ ≤ P̌ log2(N̄/P̌) + P̌ . (8)

where P̌ = 3n− 1.
The inequalities (7) and (8) state an upper bound for the number of CF tests

required to process the list C(X) in the worst and best cases respectively. In the
worst case, this bound depends on three parameters the number of extensions
N̄ (this number depends on the graph collection features such as density of
edges, number of labels, etc.), n the size of the matrix X, and |L| (this number
depends on the vertex label distribution). In the best case, this bound depends
only on N and n.

4 Experimental results

In order to evaluate the usefulness of the proposed properties to reduce the
number of canonical form tests, we compared grCAM against FFSM regarding
the number of duplicates and the number of canonical form tests performed
during the mining.

Additionally, we include a comparison of grCAM against FFSM, gRed,
gSpan, and Gaston regarding their execution times. The gRed algorithm is one
of the most recent algorithm for FCSM and the other algorithms are the most
commonly referenced and the most successful in previous comparative stud-
ies [15, 17]. They were implemented in the common Java framework [17] which

13

is distributed under GNU license. The implementation of gRed and grCAM was
developed using this framework.

All the experiments were done using an Intel Core 2 Duo PC at 2.2 GHz
with 4 GB of RAM using a 64-bits Debian GNU/Linux distribution. The IBM
Java Virtual Machine (JVM) Version 6 was used to run the algorithms. The
maximum heap memory space of JVM was assigned in 3.2GB. Thus, we remove
the influence of operative system swap operations during the executions.

4.1 Collections of graphs used for the experimentation

The biochemical data collections, specifically the molecular datasets, constitute
one of the main application field for graph mining. Therefore, this kind of col-
lections has been commonly used to evaluate the performance of the algorithms
for FCSM. The collections used in our experiments are shown in Table 1.

The PTE collection is the smallest dataset (according to the number of
graphs) considered in this work; it contains only 337 graphs representing mole-
cules used in the predictive toxicologic evaluation challenge [16]. In spite of its
small size, PTE has a big amount of frequent connected subgraphs; for example,
it has 136981 frequent connected subgraphs using the 2% of the collection size
as support threshold.

In this work, we used two medium size collections CAN2DA992 and HIV3.
CAN2DA99 collection contains the graph representation of 32557 molecules dis-
covered in carcinogenic tumors and HIV collection contains the graph repre-
sentation of 42689 molecular structures of the human immunodeficiency virus.
Additionally, we also use the collections HIV-CM and HIV-CA; which are small
parts of the HIV dataset containing only the confirmed moderately active mole-
cules (HIV-CM) and the confirmed active molecules (HIV-CA). The biggest
collection used in our experiments was NCI4, which contains the graph repre-
sentation of molecules from several sources.

4.2 Experiments

In our experiments we used low support thresholds to evaluate the performance
of the algorithms. These thresholds are very important in data mining appli-
cations [4, 8]. For example, there are some applications like classification and
clustering where frequent complex graph structures are needed [8], and these
complex structures only can be found with low support thresholds. Additionally,
high thresholds are commonly fulfilled by connected subgraphs with small size
regarding the number of vertices, edges, or cycles. For example, Table 2 shows
the number and size of frequent connected subgraphs found in the HIV-CA
collection using high and low support thresholds. High values of these thresh-
olds only produce a few small patterns unlike low values which produce more
patterns with large size. Moreover, almost all recent algorithms achieve short

2http://dtp.nci.nih.gov/docs/cancer/cancer data.html
3http://dtp.nci.nih.gov/docs/aids/aids data.html
4http://cactus.nci.nih.gov/ncidb2/download.html

14

runtimes for high support thresholds, therefore it is more important to propose
fast algorithms for low support thresholds. Finally, it is important to highlight
that, like in previous comparative studies [17, 15], in this work the support
thresholds are defined as a percentage of the collection size.

The first experiment of this paper was conceived for evaluating the impact of
the non-usefulness property in the pre-filtering stage of grCAM. The algorithms
grCAM and FFSM use adjacency matrices to represent graph candidates during
the mining process, unlike gRed, gSpan and Gaston which use other different
approaches. Therefore, in this experiment grCAM and FFSM are compared
regarding the number of duplicate candidates that were considered in their
mining strategies. As we can see in Table 3, the number of duplicates in all cases
was reduced by grCAM. For example, in CAN2DA99 for support thresholds
between 5% and 7%, grCAM reduces almost 25% of duplicates regarding FFSM.

The second experiment evaluated the impact of the reuse properties in the
post-calculation stage of grCAM. The algorithms grCAM and FFSM were com-
pared regarding the number of exhaustive canonical form tests. As it can be
seen in Table 4, the number of such expensive tests were reduced by grCAM in
all the cases. For example, in NCI for support thresholds between 5% and 7%,
grCAM reduces almost 30% of CF tests regarding FFSM.

In this two experiments, even though our algorithm has the best perfor-
mance, the improvement achieved by grCAM in PTE (for low support thresh-
olds) is small (the attained reduction is less than the 10%) due to the label
distribution in this dataset. In PTE, frequent connected subgraphs (for the
lowest support threshold 2%) contain only three edge labels and only one of this
label prevails. Therefore, it is difficult to use candidates in the post-calculation
procedure to reuse previous CF test results. Moreover, it is also difficult to fil-
ter non-useful candidates during pre-filtering using the non-usefulness property.
Thus, the impact of the novel properties for this collection is lesser. Nevertheless
in general, the new properties help to reduce runtimes of grCAM.

Additionally, we included a performance comparison involving grCAM, FFSM,
gRed, gSpan, and Gaston. This comparison includes the evaluation of the run-
times. The runtime for the algorithms was recorded varying the support thresh-
old in the six datasets. As we can see in Fig. 9, grCAM beats FFSM in all the
tests.

Gaston was unable to complete the execution for some low support thresh-
olds (less than 3% in NCI) due to its high memory requirements. However, in
the smallest collection (PTE), the best runtimes were achieved by Gaston and
gRed. The worst runtimes were achieved by FFSM and gSpan while the best
runtimes on the large collections were obtained by grCAM for the evaluated
support thresholds.

5 Conclusions

In this paper, a non-usefulness property and four reuse properties of adjacency
matrices, which are useful for graph mining were introduced. The non-use-

15

fulness property allows the reduction of the number of candidates. The reuse
properties enable to reduce the number of CF tests by reusing previous test
results. Besides, the reuse properties allow to define boundaries between CAMs
and non CAMs in the candidate space (sub-optimal CAM tree).

Additionally, a new algorithm (grCAM) for FCSM using the proposed prop-
erties, was introduced. Theoretical analysis and experimental results shown the
good performance of our proposal.

We compared grCAM against FFSM and other state of the art algorithms.
The usefulness of the novel adjacency matrix properties for graph mining was
corroborated in the experimentation, showing that these properties allow to
reduce the number of duplicate candidates (this reduction could be more than
25%), as well as the number of canonical form tests (this reduction could be
more than 30%). Moreover, grCAM achieved better runtimes than the other
tested algorithms for low supports, when graph collections were large.

In this research, we have shown that canonical forms have not been suffi-
ciently studied and new properties can be found to improve the mining process.
Our proposal showed that it is possible to reduced the time spent in duplicate
candidate detection during the mining. Moreover, the novel adjacency matrix
properties can be used in any proposal for FCSM that uses candidates repre-
sented by adjacency matrices.

As future work, we are going to develop novel approaches using the grCAM
ideas for finding other frequent graph based patterns like closed and maximal.

References

[1] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules.
In Proceedings of the 1994 International Conference on Very Large Data
Bases (VLDB’94), pages 487–499, Santiago, Chile, 1994.

[2] C. Borgelt. Canonical Forms for Frequent Graph Mining. In Proceedings
of the 30th Annual Conference of the Gesellschaft für Klassifikation e.V.,
pages 8–10, Freie Universitat Berlin, 2006.

[3] C. Borgelt and M. R. Berthold. Mining Molecular Fragments: Finding Rel-
evant Substructures of Molecules. In Proceedings of the 2002 International
Conference on Data Mining (ICDM’02), pages 211–218, Maebashi, Japan,
2002.

[4] W. Fan, K. Zhang, H. Cheng, J. Gao, X. Yan, J. Han, P. Yu, and O. Ver-
scheure. Direct Mining of Discriminative and Essential Frequent Patterns
via Model-based Search Tree. In Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages
230–238, Nevada, USA, 2008.

[5] A. Gago-Alonso, J. E. Medina-Pagola, J. A. Carrasco-Ochoa, and J. F.
Mart́ınez-Trinidad. Mining Frequent Subgrahps Reducing the Number
of Candidates. In Proceedings of the European Conference on Machine

16

Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML-PKDD’08), Antwerp, Belgium, 2008.

[6] J. Han, H. Cheng, D. Xin, and X. Yan. Frequent Pattern Mining: Current
Status and Future Directions. Data Mining and Knowledge Discovery, 10th
Anniversary Issue, 15(1):55–86, 2007.

[7] L.B. Holder, D.J. Cook, and S. Djoko. Substructure discovery in the subdue
system. In Proceedings of the AAAI Workshop on Knowledge Discovery in
Databases (KDD’94), page 169180, Seattle, WA, 1994.

[8] M.S. Hossain and R.A. Angryk. GDClust: A Graph-based Document Clus-
tering Technique. In Proceedings of the 7th IEEE International Conference
on Data Mining Workshops, pages 417–422, Omaha, NE, 2007.

[9] J. Huan, W. Wang, and J. Prins. Efficient Mining of Frequent Subgraph
in the Presence of Isomorphism. In Proceedings of the 2003 International
Conference on Data Mining (ICDM’03), pages 549–552, Melbourne, FL,
2003.

[10] A. Inokuchi, Washio, and H. T., Motoda. An Apriori based Algorithm
for Mining Frequent Substructures from Graph Data. In Proceedings of the
2000 European Symposium on the Principle of Data Mining and Knowledge
Discovery (PKDD’00), pages 13–23, Lyon, France, 2000.

[11] A. Inokuchi, T. Washio, Nishimura K., and H. Motoda. A Fast Algorithm
for Mining Frequent Connected Subgraphs. Technical Report RT0448, IBM
Research, Tokyo Research Laboratory, 2002.

[12] M. Kuramochi and G. Karypis. Frequent Subgraph Discovery. In Pro-
ceedings of the 2001 International Conference on Data Mining (ICDM’01),
pages 313–320, San Jose, CA, 2001.

[13] Dehaspe L., Toivonen H., and King R. Finding frequent substructures
in chemical compounds. In Proceedings of the 1998 International Confer-
ence on Knowledge Discovery and Data Mining (KDD’98), page 3036, New
York, NY, 1998.

[14] S. Nijssen and J. Kok. A Quickstart in Frequent Structure Mining can
Make a Difference. In Proceedings of the 2004 ACM SIGKDD International
Conference on Kowledge Discovery in Databases (KDD’04), pages 647–352,
Seattle, WA, 2004.

[15] S. Nijssen and J. Kok. Frequent Subgraph Miners: Runtimes Don’t Say
Everything. In Proceedings Mining and Learning with Graphs (MLG’06),
workshop held with ECML-PKDD’06, pages 173–180, Berlin, Germany,
2006.

17

[16] A. Srinivasan, R.D. King, S.H. Muggleton, and M. Sternberg. The Pre-
dictive Toxicologic Evaluation Challenge. In Proceedings of the 15th
International Conference on Artificial Intelligence (IJCAI’97), Morgan-
Kaufmann, pages 1–6, 1997.

[17] M. Wörlein, T. Meinl, I. Fischer, and M. Philippsen. A Quantitative Com-
parison of the Subgraph Miners Mofa, gSpan, FFSM, and Gaston. In
Proceedings of the 9th European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD’05), pages 392–403, Porto, Por-
tugal, 2005.

[18] X. Yan and J. Han. gSpan: Graph-Based Substructure Pattern Min-
ing. In Proceedings of the 2002 International Conference on Data Mining
(ICDM’02), pages 721–724, Maebashi, Japan, 2002.

18

Table 1: Collections of graphs.

PTE CAN2DA99 HIV-CA HIV-CM HIV NCI

Number of
graphs

340 32 557 423 1 081 42 689 237 771

Number of
edge labels

4 4 3 3 3 4

Average of
edges by
graph

27 28 42 34 28 22

Number
of vertex
labels

66 69 21 27 63 78

Average of
vertices by
graph

27 26 40 32 26 21

Table 2: Number and size of graphs found for high and low thresholds in the
HIV-CA dataset.

High support thresholds Low support thresholds

threshold Number of
frequent
connected
subgraphs

Size of
the bigest
found
subgraph

threshold Number of
frequent
connected
subgraphs

Size of
bigest
found
subgraph

30% 277 9 3% 8 838 698 44

40% 105 7 4% 1 230 027 37

50% 61 7 5% 272 943 33

19

Table 3: Number of duplicate candidates found in the six datasets varying the
support threshold for the algorithms grCAM and FFSM.

Alg.\ th. 2% 3% 4% 5% 6% 7%

PTE

grCAM 521 014 56 023 15 217 8 236 4 290 3 451

FFSM 575 302 62 216 16 866 9 652 5 462 4 516

HIV-CM

grCAM 1 709 165 381 833 51 671 17 660 10 060 6 902

FFSM 2 171 660 434 332 62 951 22 409 12 901 9 067

HIV-CA

grCAM 548 735 833 40 348 638 4 299 527 923 809 379 068 174 266

FFSM 658 483 021 43 309 620 4 809 405 989 306 416 344 196 931

HIV

grCAM 49 175 20 206 10 950 6 965 4 754 3 463

FFSM 59 550 25 024 13 706 8 822 6 122 4 537

CAN2DA99

grCAM 37 918 11 523 5 835 3 660 2 302 1 632

FFSM 45 924 14 545 7 548 4 839 3 157 2 237

NCI

grCAM 12 818 6 266 4 168 1 408 940 627

FFSM 15 331 7 586 5 073 1 911 1 198 788

20

Table 4: Number of canonical form tests performed by grCAM and FFSM in
the six datasets varying the support threshold.

Alg.\ th. 2% 3% 4% 5% 6% 7%

PTE

grCAM 643 121 77 156 20 746 11 624 6 344 5 165

FFSM 712 283 80 362 22 821 13 279 7 600 6 302

HIV-CM

grCAM 2 149 015 482 159 71 544 25 973 15 118 10 578

FFSM 2 730 520 546 104 85 557 32 066 18 799 13 316

HIV-CA

grCAM 568 576 794 43 332 196 5 376 833 1 152 101 477 769 224 373

FFSM 790 179 611 52 148 318 6 039 432 1 262 249 539 634 259 179

HIV

grCAM 69 266 29 425 16 360 10 625 7 388 5 457

FFSM 84 677 36 515 20 349 13 244 9 272 6 904

CAN2DA99

grCAM 52 754 16 891 8 822 5 651 3 631 2 577

FFSM 63 015 20 822 11 055 7 175 4 728 3 365

NCI

grCAM 28 121 12 831 6 371 2 338 1 641 1 111

FFSM 33 105 16 114 7 720 3 140 2 231 1 761

21

Fig. 1: Example of adjacency matrices of a graph G. The first matrix (A) is the
CAM of G according with with the permutation of the vertices {v1, v2, v3, v4};
the other one (B) is a not CAM adjacency matrix of G.

Fig. 2: (A) and (B) are examples of the maximal proper submatrices of the
matrices shown in Fig. 1 (A) and (B) respectively.

Fig. 3: Example of collection of graphs D.

22

Fig. 4: Example of a CAM Tree. Solid lines represent the parent/child rela-
tionship among the nodes and dotted lines are used for pointing out the second
parameter matrix in join operations. The additional labels ’c.1’, ’c.2’, or ’e’
point out the way that the matrices were generated: condition 1 or 2 of join, or
extension respectively.

23

Fig. 5: Examples of cases where the result of the join operation has (A) zero
elements, (B,C) one element, and (D) two elements.

Fig. 6: Example of the usefulness of the reuse properties for the last edge entry
in children obtained by join operations. Solid lines represent the parent/child
relationship among the nodes in a portion of suboptimal CAM tree. Dotted
lines between matrices are used for pointing out the second parameter matrix
in join operations.

24

Fig. 7: Example of the usefulness of the reuse properties for the last edge entry
in children obtained by extension operations with the same last vertex label.

Fig. 8: Example of the usefulness of the reuse properties for the last vertex
entry.

25

Fig. 9: Runtimes for the six datasets varying the support threshold. Gaston
was unable to complete the execution for some low support thresholds in NCI
due to its high memory requirements.

26

