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Abstract

Support calculation and duplicate detection are the most challenging

and unavoidable subtasks in frequent connected subgraph (FCS) mining.

The most successful FCS mining algorithms have focused on optimizing

these subtasks since the existing solutions for both subtasks have high

computational complexity. In this paper, we propose two novel properties

that allow removing all duplicate candidates before support calculation.

Besides, we introduce a fast support calculation strategy based on em-

bedding structures. Both properties and the new embedding structure

are used for designing two new algorithms: gdFil for mining all FCSs;

and gdClosed for mining all closed FCSs. The experimental results show

that our proposed algorithms get the best performance in comparison with

other well known algorithms.

∗Corresponding author
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1 Introduction

Frequent connected subgraph (FCS) mining in labeled-graph collections is an

active research topic in data mining, with wide applications. FCS mining is the

process of finding connected subgraphs that frequently occur in a collection of

labeled graphs. Examples of labeled-graph collections can be found in diverse

sources: chemical compound databases, XML documents, citation networks,

biological networks, and so forth. As a consequence, several FCS mining algo-

rithms have been proposed [10]. The present work is focused on algorithms for

mining the complete set of FCSs, and the closed FCSs, which are a compact

representation allowing the reconstruction of the whole set of FCSs including

their frequencies.

SUBDUE [11] was one of the first proposals for solving the frequent sub-

graph mining problem. This approach is based on minimum description length

and background knowledge. Another proposal for frequent subgraph mining

in chemical compounds datasets was developed using inductive logic program-

ming [5]. However, the first algorithm for finding all frequent (connected or

unconnected) subgraphs in a collection of labeled graphs was AGM [15]. This

algorithm was followed by FSG [16] and AcGM [14] algorithms for mining all fre-

quent connected subgraphs. Both algorithms are based on the original Apriori

algorithm [1] for mining frequent itemsets.

Later, pattern growth based algorithms such as gSpan [21], CloseGraph [23],

MoFa [3], Moss-MoFa [4], FFSM [13], Gaston [17], and gRed [8] were developed.

Previous comparative studies have shown that pattern growth based algorithms

have better performance than Apriori based ones [18, 20]. Therefore, in this

paper we will focus on pattern growth based algorithms.

Duplicate detection and support calculation are the two hardest subtasks

in FCS mining. A duplicate candidate is a subgraph that has already been
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considered in a previous step, but it appears again during the search. The

problem of duplicate candidates is faced by representing the subgraphs with an

unique code called canonical form (CF). Candidate enumeration strategies are

commonly defined using these representations, trying to avoid non-canonical

forms by performing CF tests which have very high computational complex-

ity [2]. The DFS code (Depth First Search code) is an example of a promising

kind of canonical form for FCS mining [21, 18]. On the other side, support

calculation requires the expensive subgraph isomorphism tests in FCS mining.

Embedding structures used by MoFa, FFSM, and Gaston avoid this kind of

tests, precalculating and storing subgraph isomorphism embeddings.

On the other hand, mining all frequent connected subgraphs may generate an

exponential number of frequent patterns. Closed frequent connected subgraphs

have been used to reduce the number of patterns resulting from mining [23,

4, 9]. Moreover, this set of patterns allows us to reconstruct the whole set

of all frequent connected subgraphs. Pruning techniques developed in closed

FCS mining also increase the efficiency of graph mining algorithms. The most

important algorithms for closed FCS mining are CloseGraph [23] and Moss-

MoFa [4].

This work is an extension of [7], where we presented preliminary results.

In such conference paper, a new algorithm for FCS mining, called gdFil, was

introduced. A cut property of the DFS code was used in gdFil, for detecting all

duplicate candidates before support calculation. Moreover, support calculation

in gdFil was faced using a new kind of embedding structure called DFSE (Depth

First Search Embedding). In the present work, we further extend the published

results in a substantive way, including a more detailed explanation about cut

properties, gdFil, and the DFSE structure. The proof of the cut property is

also included in this paper jointly with another property called cut distribution
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property, which also supports the proposed duplicate detection strategy. The

proposed properties and the DFSE structure can be used to mine closed FCSs;

therefore, an extension of gdFil, called gdClosed, for closed FCS mining is also

introduced. The proposed algorithms gdFil and gdClosed are compared against

other reported algorithms over real world and synthetic datasets.

The basic outline of this paper is as follows. Section 2 provides some basic

concepts; it also contains the related work. The cut properties and the DFSE

structure are introduced, discussed, and proved in section 3; this section also

introduces the gdFil and gdClosed algorithms. The experimental results in real

world and synthetic datasets are presented in section 4. Finally, conclusions of

the research and some ideas about future directions are exposed in section 5.

2 Background

In this section, we start providing the background and notation used in the

following sections. Next, some definitions and properties of the DFS code are

presented. Finally, the early termination pruning for closed FCS mining is also

explained.

2.1 Basic Concepts

This work is focused on simple undirected labeled graphs. Henceforth when we

refer to graphs we assume this kind of graph. The formal definition of this type

of graph is as follows.

A labeled graph is a 4-tuple, G = ⟨V,E, L, l⟩, where V is a set whose elements

are called vertices, E ⊂ {{u, v} |u, v ∈ V } is a set whose elements are called

edges (each edge is a set with exactly two vertices), L is a set of labels and

l : V ∪E → L is a labeling function for assigning labels to vertices and edges.

Let G1 = ⟨V1, E1, L1, l1⟩ and G2 = ⟨V2, E2, L2, l2⟩ be two graphs having the
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same set of labels L and the same function l. We say that G1 is a subgraph of

G2, and we use the notation G1 ⊆ G2, if V1 ⊆ V2 and E1 ⊆ E2. In this case, we

say that G2 is a supergraph of G1.

In graph mining over collections of labeled graphs, the frequency of the

candidates is calculated using subgraph isomorphism tests. We say that f is an

isomorphism between G1 and G2 if f : V1 → V2 is a bijective function and:

• ∀v ∈ V1, l1(v) = l2(f(v));

• ∀{u, v} ∈ E1, {f(u), f(v)} ∈ E2 ∧ l1({u, v}) = l2({f(u), f(v)}).

When there is an isomorphism between G1 and G2, we say that G1 and G2 are

isomorphic. One way to approach the isomorphism test is using canonical forms

(CF) for representing graphs [2].

A subgraph isomorphism from G1 to G2 is an isomorphism from G1 to a

subgraph of G2. In this case, we will say that G2 holds G1. One way to

approach the subgraph isomorphism test in graph mining is using embedding

structures [13, 17].

We say that P = {v1, v2, . . . , vk} is a path in a graph G = ⟨V,E, L, l⟩, if

P ⊆ V and for each pair of consecutive vertices vi and vi+1, {vi, vi+1} ∈ E. In

this case we say that v1 and vk are connected by P . If v1 = vk we say that P

is a cycle. A graph G is connected if each pair of vertices in V is connected by

a path.

Trees are a special kind of connected graphs. A tree is a connected graph

without cycles. A tree is called a rooted tree if one vertex has been selected as

root; in this case, the edges have a natural orientation starting from the root.

Let T = ⟨VT , ET , LT , lT ⟩ be a rooted tree with root v0 and let v, u ∈ VT .

We say that v is the parent of u if the unique path from v0 to u passes through

v and {v, u} ∈ ET . In this case, we also say that u is a child of v.
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Let D = {G1, G2, . . . , G|D|} be a collection of labeled graphs and let δ be a

predefined threshold of frequency. The support of a graph g in D is defined as

the number of graphs Gi ∈ D such that there is a subgraph isomorphism from g

to Gi. We use the notation σ(g,D) to refer to the support of g in the collection

D. A graph g occurs frequently in the collection D if σ(g,D) ≥ δ. Frequent

connected subgraph (FCS) mining is the process of finding all the connected

subgraphs that frequently occur in a collection of graphs.

A graph g is closed in a collection D if there is no supergraph of g with the

same support of g. Closed FCS mining consists in finding all closed frequent

connected subgraphs in a collection of graphs.

2.2 DFS code

The DFS code is a kind of canonical graph representation proposed by Yan and

Han [21]. This code was used in gSpan [21], CloseGraph [23], and gRed [8] for

representing frequent graph candidates.

A DFS tree T is constructed when a DFS traversal in a graph G = ⟨V,E, L, l⟩

is performed. Each DFS traversal (DFS tree) defines a unique order among all

the vertices; therefore, we can number each vertex according to this DFS order.

Thus, each edge can be represented by a 5-tuple, (i, j, li, l(i,j), lj) where i and j

are the numbers (subindices) of the vertices (vi and vj), li and lj are the labels

of these vertices respectively, and l(i,j) is the label of the edge connecting vi

and vj . If i < j it is a forward edge; otherwise it is a backward edge. In short,

the order relation e1 ≺e e2 holds if e1 appears before e2 in a DFS traversal.

When e1 and e2 have same source and destination vertices, they are compared

lexicographically using the order between labels ≺l (the last three components

in each 5-tuple).

A DFS code is a sequence of edges built from a DFS tree sorting the edges
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according to≺e. The order≺e can be also extended to a lexicographic order (≺s)

between two DFS codes. The minimum DFS code is defined as the minimum

sequence among all DFS codes of the same graph according to ≺s [21].

Suppose that s = e1, e2, . . . , em is a minimum DFS code. An edge e is a

rightmost path extension of s if e connects the rightmost vertex with another

vertex in the rightmost path (backward extension); or it introduces a new vertex

connected from a vertex of the rightmost path (forward extension). In such

cases, the DFS code s′ = s ⋄ e is the code obtained extending s by e; s′ is called

a child of s and s is called a parent of s′.

Some properties of the DFS code were studied and used for reducing the

number of candidates in gRed [8]. These properties are summarized as follows.

The set RE(s) of all rightmost path extensions of s can be partitioned into

several sets RE(s) = B0(s)∪ . . .∪Bn−1(s)∪F0(s)∪ . . .∪Fn−1(s), where Bi(s)

denotes the set that contains the backward extensions to the destination vertex

vi, and Fi(s) is the set of forward extensions from vertex vi.

For example, Fig. 1(a) shows the DFS tree of the code

s = (0, 1, A,−, B)(1, 2, B,−, C)(2, 0, C,−, A)(2, 3, C,−, C)(0, 4, A,−, B)

(4, 5, B,−, C)(4, 6, B,−, C);

the rightmost path of s is (v0, v4, v6). The fourth component of each edge tuple

(that is the edge label) is set to “−” for indicating an undefined or identical

labels. In Fig. 1(b), the backward extension sets B0(s) = {(6, 0, C,−, A)} and

B4(s) = {(6, 4, C,−, B)} are shown; and in Fig. 1(c), the forward extension sets

F0(s) = {(0, 7, A,−, C)}, F4(s) = {(4, 7, B,−, D), (4, 7, B,−, C)}, and F6(s) =

{(6, 7, C,−, C)} are shown. Thus, the extension set RE(s) can be partitioned

into B0(s) ∪B4(s) ∪ F0(s) ∪ F4(s) ∪ F6(s).

For each vertex vi in the rightmost path, i ̸= n− 1, the edge fi denotes the
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forward edge from vertex vi lying in the rightmost path. The notation e−1 is

used to refer to the reverse edge of e.

The first two properties proposed in [8] were named non-minimality condi-

tions and the last one reuse condition.

1. Forward non-minimality condition: If e ∈ Fi(s) with i ̸= n − 1 and

e ≺l fi, then s′ = s ⋄ e is a non-minimum DFS code.

2. Backward non-minimality condition: If e ∈ Bi(s) and e−1 ≺l fi,

then s′ = s ⋄ e is a non-minimum DFS code.

3. Reuse condition: Let E be one of the sets Fi(s) or Bi(s). If e, e′ ∈ E,

then, the following statements are true:

(a) if s ⋄ e is a minimum DFS code and e ≼l e
′, then s ⋄ e′ is a minimum

DFS code;

(b) if s ⋄ e is a non-minimum DFS code and e′ ≼l e, then s ⋄ e′ is a

non-minimum DFS code.

These properties will be used in this paper to propose two new properties,

which allow removing all duplicate candidates before support calculation (full

candidate pruning).

2.3 Early termination pruning for mining closed patterns

The CloseGraph algorithm [23] combines the use of DFS codes with the early

termination pruning for achieving better runtimes in closed FCS mining.

Let g be a graph represented by its minimum DFS code s and let e be

an extension of g which could be a rightmost path extension of s or not. Let

D = {G1, G2, . . . , G|D|} be a collection of labeled graphs. For each Gi ∈ D,

φ(g,Gi) denotes the number of subgraph isomorphisms from g to Gi. Thus, the

occurrence of g in D is defined as I(g,D) =
∑|D|

i=1 φ(g,Gi).
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The graph g ⋄x e denotes the resulting graph after adding the edge e to g.

The operator ⋄x is used to indicate that e can be rightmost path extension or

not. For each Gi ∈ D, ϕ(g, e,Gi) denotes the number of subgraphs of Gi that

are isomorphic to g and can be extended using e. Let L(g, e,D) denote the sum∑|D|
i=1 ϕ(g, e,Gi).

The extension e is called an equivalent extension of g in D if L(g, e,D) =

I(g,D). This definition implies that every closed child of g in D must contain

g ⋄x e. Therefore, only the children of g ⋄x e should be considered for mining

closed patterns, and the children of g must be pruned from the search space

(this pruning is called early termination pruning). Nevertheless, this statement

is not true for all the cases, there are situations where the early termination

pruning can not be applied. This fact is known as a failure of early termination.

A failure of early termination can be described as follows. Let e be an

equivalent extension of g inD and let h be a supergraph of g such that g⋄xe ̸⊂ h.

The graph h is called a crossing situation of e for g if e is not an equivalent

extension of h. Crossing situations can cause the lack of patterns in graph

mining, so they must be tested during the mining. Early termination fails when

the equivalent extension e of g has at least a crossing situation.

The CloseGraph algorithm uses the early termination pruning in an efficient

way for mining closed patterns [23]. One of the algorithms proposed in this

paper uses this pruning for closed FCS mining in combination with a novel

candidate pruning, also proposed in this paper.

3 Frequent connected subgraph mining

In this section, we introduce two novel properties of the DFS code, which are

useful to remove all duplicate candidates in FCS mining, before support cal-

culation. The cut property defines boundaries between useful and duplicated
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candidates. Moreover, these boundaries can be efficiently detected using the

cut distribution property. A new embedding structure called DFSE will also

be introduced. This structure is based on an edge sequence growing pattern

strategy according to DFS codes.

Based on the novel properties and the DFSE structure, two new FCS mining

algorithms are proposed: gdFil for mining all FCSs; and gdClosed for mining

all closed FCSs. The DFSE structure is used, in both algorithms, to speed

up the subgraph isomorphism tests, which allows getting a better efficiency in

the enumeration process and support calculation. The enumeration strategy of

gdFil and gdClosed is based on the DFS code; that is, candidates are represented

by means of a sequence of edges. DFSE stores embeddings of edges unlike the

structure used by Gaston, which uses embeddings of vertices.

3.1 The cut properties of the DFS codes

In this section, we present the cut and cut distribution properties, which are

used in the gdFil and gdClosed algorithms. The proofs and some explanations

about these properties are also included.

The cut property proposed in this paper is derived from the reuse condition,

which is applied to forward and backward extensions as follows:

Theorem 1 (Cut property) Let s be a minimum DFS code, and H be one

of the sets Fi(s) or Bi(s) (the forward or backward extension sets for a vertex

vi respectively), and suppose that H is sorted in ascending order according to

≺e. If there are extensions in H that produce non-minimum DFS codes then

they are at the beginning of H. Besides, if there are extensions that produce

minimum DFS codes they are at the end of H.

Proof. If all extensions in H produce non-minimum DFS codes or all of them

produce minimum DFS codes then the theorem is true. Therefore, suppose that
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there are both kinds of extensions in H. Let ê, ě ∈ H be two extensions such

that ê produces a non-minimum DFS code and ě produces a minimum DFS

code. It is easy to see that ê ≺e ě, because in the opposite case s ⋄ ě should

be a non-minimum DFS code (according to the reuse condition), contradicting

the hypothesis. Therefore, we obtain that any extension in H producing a non-

-minimum DFS code is before any other one producing a minimum DFS code.

⊓⊔

Thus, each set H (Fi(s) or Bi(s)) is divided into two partitions H = Ĥ ∪ Ȟ,

the duplicate partition Ĥ (extensions that produce non-minimum DFS codes)

and the useful partition Ȟ (extensions that produce minimum DFS codes). The

extensions from the duplicate partition are called duplicate extensions and the

extensions from the useful partition are called useful extensions.

This property states that there could be a non-canonical cut ĥ ∈ Ĥ being

the last in the duplicate partition, according to ≺e. Besides, in the same way,

there could be a canonical cut ȟ ∈ Ȟ being the first in the useful partition. It

is important to highlight that these partitions could be empty; therefore, one

of those cut elements may not exist. When one of these cut elements does not

exist, we use the notation ĥ = ϵ or ȟ = ϵ according to the case. If both elements

exist, the non-canonical cut is immediately before the canonical cut.

The cut property was used in gdFil for removing all duplicates before sup-

port calculation. Additionally, this property is used in combination with early

termination pruning for removing all duplicates in gdClosed.

The following theorem explains an important property about cut elements.

This property is called cut distribution property, since it states some relation-

ships of cuts between different sets H ′ and H.

Theorem 2 (Cut distribution property) Let s be a minimum DFS code,

and let H be one of the sets Fi(s) or Bi(s). Suppose that H ′ ⊆ H is a subset of
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H. Let ĥ and ȟ be the cuts of H, and let ĥ′ and ȟ′ be the cuts of H ′. Then the

following statements are true:

1. If ĥ′ ̸= ϵ, then ĥ′ ≼e ĥ.

2. If ȟ′ ̸= ϵ, then ȟ ≼e ȟ
′.

Proof. First, we will prove the first statement. Suppose that ĥ′ ̸= ϵ. Since

H ′ ⊆ H, we have ĥ′ ∈ H. Specifically, we have ĥ′ ∈ Ĥ since ĥ′ is a non-

-minimum DFS code. Therefore, we conclude that ĥ′ ≺e ĥ, since ĥ is the last

element in the duplicate partition Ĥ.

Next, we will prove the second statement. Suppose that ȟ′ ̸= ϵ. Since

H ′ ⊆ H, we have ȟ′ ∈ H. Specifically, we have ȟ′ ∈ Ȟ since ȟ′ is a minimum

DFS code. Therefore, we conclude that ȟ ≺e ȟ′, since ȟ is the first element in

the useful partition Ȟ. ⊓⊔

In FCS mining, the whole set of all rightmost path extensions RE(s) is built

incrementally. The cut distribution property allows calculating cuts of RE(s)

in such incremental process.

3.2 The DFSE structure

In this section, we introduce the DFSE structure, which is used in the gdFil and

gdClosed algorithms for improving support calculation. We include a graphical

example and some explanations about the embedding structure.

Let D = {G0, G1, . . . , GN−1} be a graph collection with N graphs which are

represented using adjacency lists. Let e be an edge belonging to a DFS code, let

G ∈ D be a graph in the collection, and let ek ∈ E(G) be an edge of G where

k (0 ≤ k < |E(G)|) is the edge identifier. We denote by e.l1, e.le, and e.l2 the

labels of the first vertex, the edge and the second vertex of e respectively. We

say that e and ek are the same edge according to the labels (denoted as e =l ek)
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if (e.l1, e.le, e.l2) = (ek.l1, ek.le, ek.l2) or (e.l1, e.le, e.l2) = (ek.l2, ek.le, ek.l1). In

the first case, we say that sign(e, ek) = +1, and in the second case sign(e, ek) =

−1.

If e is a non-symmetric edge (e.l1 ̸= e.l2), the embedding list of e regarding

G denoted as L(e,G) is defined as follows:

L(e,G) = {(ek, ϵ, λ)|ek ∈ E(G), e =l ek and sign(e, ek) = ϵ}, (1)

where λ represents a null pointer. The third component of each element of

L(e,G) will be used for those codes with more than one edge. If e is a symmetric

edge (e.l1 = e.l2), the function sign(e, ek) can take both values (+1 or −1).

Thus, we consider in L(e,G) any value (ek,±1, λ) for each ek ∈ E(G) such that

e =l ek.

Let s be a minimum DFS code. If s is a code with only one edge e the

embedding list of s regarding G is denoted as L(s,G) = L(e,G).

As it is shown in (2), the embedding list L(s⋄e,G) of a child of s is built from

L(s,G), during the execution of the gdFilExtensions procedure (see Fig. 2).

The third component in the embedding tuples is a pointer to an embedding

tuple of the parent. The notations τ.k, τ.ϵ and τ.p are used to refer to the edge

identifier, the sign and the parent of the tuple τ , respectively.

L(s ⋄ e,G) = {(ek, ϵ, p)|ek ∈ E(G), e =l ek, sign(e, ek) = ϵ and

is a pointer to a tuple in L(s,G)}.
(2)

Examples of embedding lists are illustrated in Fig. 3. In order to simplify

the explanation of Fig. 3, we assume that each undirected edge, in the graphs

of the collection, is represented according to the lexicographic order of ver-

tex labels. For example in the graph of Fig. 3(B), the edge e2 is stored as

(v1, v0). In Fig. 3(C), the embedding list of s0 regarding G0 is L(s0, G0) =
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{(e2,−1, λ), (e1,+1, λ)}. The embedding list of s1 regarding G0 is L(s1, G0) =

{(e4,+1, p1), (e5,+1, p2)}, where p1 and p2 are pointers to (e2,−1, λ) in L(s0, G0)

since the edges e4 and e5 are extensions of e2 in G0.

Using the embedding list definition, we introduce the DFSE structure of a

DFS code s regarding the collection D as:

ES(s) = {(G,L)|G ∈ D,L = L(s,G) and L ̸= ∅}. (3)

For example in Fig. 3, the DFSE structure of si is ESi for i = 0, 1, for

simplicity only the graph G0 is illustrated.

The support of s in D can be calculated as the number of elements in ES(s).

Moreover, the use of embedding lists avoids all exhaustive isomorphism tests

since the whole embedding of a candidate graph can be obtained traversing the

third component (a pointer to its parent tuple) of each embedding tuple (see

lines 2–8 of gdFilExtensions).

3.3 The gdFil algorithm

It is known that non-minimality and reuse conditions do not allows removing all

duplicate candidates [8]. Therefore, some canonical form (CF) tests are required

for pruning all duplicates. CF tests are commonly preformed after pruning

non-frequent candidates since these tests have high computational complexity

[7, 8, 21].

Unlike previous algorithms, which only eliminate some duplicate candidates,

gdFil uses the cut properties, introduced in section 3.1, for eliminating all du-

plicate candidates before support calculation. Moreover, gdFil uses the DFSE

structure, introduced in section 3.2, for speeding up support calculation by

avoiding all subgraph isomorphism tests.

Fig. 4 outlines the pseudo-code of the main procedure of gdFil. This proce-
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dure is quite similar to the one in gSpan [21] and gRed [8], but it includes the

initialization of the DFSE structure. Then gdFil algorithm starts by removing

all non-frequent vertices and edges. Next, for each frequent edge its embed-

ding list is initialized using (1) and (3). Later, the gdFilMining procedure (see

Fig. 5) is invoked for each frequent edge. At the end of each iteration, the used

edge is dropped from the collection; that is, it will not be used anymore as a

possible extension in the next iterations.

The gdFilMining procedure recursively generates all candidate graphs (DFS

codes) that hold s, while the generated DFS codes are frequent. During an exe-

cution of this procedure, not all RE(s), the set of extensions of s (see section 2.2

for clarifying this notation), is stored. In fact, only useful (non duplicate) can-

didates are stored in ME. However, the cuts of RE(s) (see section 3.1 for

clarifying these concepts) are calculated and used for removing such duplicates.

These cuts are called global cuts since they are referring to the cuts of the whole

set RE(s).

In line 3, global cuts are initialized in ϵ, for indicating the non-existence of

such cuts when RE(s) = ∅. It is important to notice that the extensions of s

are calculated during the loop at lines 4–14.

In line 4, we can see that all the embeddings of s are traversed according to

the DFSE structure ES(s). For each embedding (G,L) of s, gdFil calculates the

rightmost path extension set EX of s in G, initializing EX = ∅ at line 5. The

gdFilExtensions procedure, explained in section 3.2, is used for calculating

EX (see line 6). Next, each set EX is purged by removing all duplicates (lines

7–9 and 11). The set ME, which does not contain duplicate candidates, is

updated by adding the elements of EX (line 13).

In line 7, some duplicate candidates are filtered applying some optimizations,

which were presented for the first time in the gSpan algorithm [22]. For example,
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gdFil restricts extensions to edges lexicographically higher than the first edge in

the code. Moreover, each backward extension with destination vertex vj , of a

minimum DFS code s, should be non smaller than any forward edge from vj in

s. These optimizations are performed during the candidate enumeration, before

the duplicate detection process.

In line 8, the non-minimality conditions are applied for removing some du-

plicates from EX. The usefulness of this step was shown in the gRed algo-

rithm [22]. These conditions can be checked in time O(1) for each candidate,

and they allow eliminating several duplicate candidates.

In line 9, the current values of the global cuts are used for removing some

duplicates from EX. We use the expression “some duplicates” because the

current values of global cuts are estimations of the correct value. For example

in the first iteration of the loop at lines 4–14, this line has no effect since global

cuts have the initial value ϵ. However, in the next iterations, these estimated

values converge to the correct values of global cuts. Therefore, the amount of

duplicates detected in line 9 increases during the above mentioned loop.

In line 10, the cuts of EX are calculated by performing CF tests using

binary search. Thus, we can reduce the number of canonical form tests, needed

for detecting such cuts. These cuts are called local cuts since they are referring

to the cuts of a subset of RE(s). Therefore, the cut distribution property (see

section 3.1) can be used for estimating bounds for global cuts. Next, local cuts

are used for removing all duplicate candidates from EX (see line 11).

In line 12, global cuts are updated from local cuts according to the cut

distribution property. The first statement of this property ensures that non-

canonical local cuts are lower bounds, according to ≺e, of non-canonical global

cuts. Therefore, the estimated values of non-canonical global cuts can be up-

dated by selecting the maximum value between the previously estimated value
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and the local cut. On the other hand, the second statement of the cut distribu-

tion property ensures that canonical local cuts are upper bounds of canonical

global cuts. Thus, the estimated values of global cuts can be updated by select-

ing the minimum value between the previously estimated value and the local

cut.

In summary, the correct values of global cuts are surely achieved in the

last iteration of the loop at lines 4–14. Nevertheless, correct values could also

be achieved, for example, at the first iteration. Therefore, the number of CF

tests required for removing all duplicates could be reduced substantially. This

duplicate elimination strategy is called by us full candidate pruning, and it

makes gdFil the first FCS miner that removes all duplicate candidates before

support calculation.

3.4 The gdClosed algorithm

In this section, we introduce the gdClose algorithm, which uses the cut prop-

erties in combination with the early termination pruning for mining all closed

FCSs. The gdClosed algorithm differs from gdFil in the gdFilMining proce-

dure, which must be modified for conducting the search space traversal toward

the closed patterns. The new mining procedure is called gdCloseMining (see

Fig. 7).

The cut and cut distribution properties, used in gdFil, are also used in

gdClosed (see lines 7–9 and 11 of Fig. 7) for removing all duplicate candidates

before early termination pruning and support calculation.

Crossing situations (see section 2.3) are checked in line 15 of Fig. 7. Thus,

only closed patterns are considered in the final results (see line 16 of Fig. 7).

Every useful extension of s is traversed during the mining, until an equivalent

extension without crossing situations appears. In line 21 of Fig. 7, the numbers
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I(g,D) and L(g, e,D) (see section 2.3) are checked for detecting equivalent

extensions. Moreover, the failure of early termination is also checked. Thus,

early termination pruning can be applied, and the incoming extensions of s can

be pruned.

The calculation of the number of embeddings (I(g,D) and L(g, e,D)) of each

extension (not only rightmost path extensions) of s is required for checking early

termination in lines 15 and 21 of Fig. 7. This number can be efficiently calcu-

lated by introducing little modifications in the gdFilExtensions procedure; the

modified procedure is called gdClosedExtensions (see Fig. 8).

In line 10 of Fig. 8, we can see that all the extensions of s are considered,

according to the early termination pruning. For each extension ek, its occurrence

I(g ⋄x ek, D) is updated, increasing its value when it appears (see line 12 of

Fig. 8). Thus, the correct value of I(g ⋄x ek, D) is achieved at the end of

the gdClosedExtensions procedure. Moreover, all extensions from the same

embedding G′ are stored in the set EA′, which is initialized in line 9 of Fig. 8.

In line 22 of Fig. 8, the set EA′ is traversed for calculating the other em-

bedding number L(g, ek, D). It is important to notice that this number can be

increased only once in each embedding of s.

As we can see, I(g,D) and L(g, e,D) can be efficiently calculated inside

of the gdClosedExtensions procedure. This is one of the main advantages of

using early termination pruning together with the DFSE structure for closed

FCS mining.

4 Experimental results

For our experiments, we took gSpan and Gaston from the ParMol [20] Java

framework which is distributed under GNU license. The gRed and gdFil algo-

rithms were implemented by us, using the same graph managing libraries pro-
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posed in ParMol. We chose these libraries and Java as programming language

because the ParMol framework contains implementations of gSpan and Gaston

that allows us to compare the algorithms regarding their conceptual improve-

ments. That is, the ParMol implementations are not biased by programming

styles and compiler optimizations, as it would happen if we use the original

implementation of the authors, which would lead to an unfair comparison.

On the other hand, we also compare gdClosed against the reported closed

FCS miners, CloseGraph and Moss-MoFa. These algorithms were also imple-

mented and compared using the above mentioned graph managing.

In this experimentation, we use real world and synthetic datasets for al-

gorithm performance evaluation. All the experiments were done using an In-

tel Core 2 Duo PC at 2.2 GHz with 4 GB of RAM running 64-bit Debian

GNU/Linux. The IBM Java Virtual Machine (JVM) Version 6 was used to run

the algorithms. The maximum heap memory space of JVM was assigned in

3.2GB. Thus, we remove the influence of swap operations during the execution.

4.1 Tests on real world datasets

The biochemical data collections, specifically the molecular datasets, constitute

one of the main application field for graph mining. Therefore, this kind of collec-

tions has been commonly used to evaluate the performance of the algorithms for

FCS mining. The real world collections used in our experiments are described

in Table 1 where PD is the number of graph in the collection, PT is the average

size of graphs (in terms of the number of edges), PV is the number of vertex

labels, and PE is the number of edge labels.

The PTE collection is the smallest dataset (according to the number of

graphs) used in this work; it contains only 337 graphs representing molecules

used in the predictive toxicologic evaluation challenge [19]. In spite of its small
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size, PTE has a big amount of frequent connected subgraphs; for example, it

has 136981 frequent connected subgraphs using the 2% of the collection size as

support threshold.

In this work, we also used two medium size collections CAN2DA991 and

HIV2. The CAN2DA99 collection contains the graph representation of 32557

molecules discovered in carcinogenic tumors; whereas the HIV collection con-

tains the graph representation of 42689 molecular structures of the human im-

munodeficiency virus. The biggest collection used in our experiments was NCI3,

which contains the graph representation of molecules from several sources. All

of these graph collections have been commonly used for performance evalua-

tions [20].

In our experiments, we used low support thresholds to evaluate the perfor-

mance of the algorithms. These thresholds are very important in data mining

applications [6, 12]. For example, there are some applications like classifica-

tion and clustering where frequent complex graph structures are needed [12],

and these complex structures only can be found with low support thresholds.

Additionally, high thresholds are commonly fulfilled by connected subgraphs

with small size regarding the number of vertices, edges, or cycles. For example,

Table 2 shows the number and size of frequent connected subgraphs found in

the PTE collection using high and low support thresholds. High values of these

thresholds only produce a few small patterns unlike low values which produce

more patterns with larger size. Moreover, almost all recent algorithms achieve

short runtimes for high support thresholds, therefore it is more important to

propose fast algorithms for low support thresholds. Finally, it is important to

highlight that, like in previous comparative studies [20, 18], in this work the

support thresholds are defined as a percentage of the collection size.

1http://dtp.nci.nih.gov/docs/cancer/cancer data.html
2http://dtp.nci.nih.gov/docs/aids/aids data.html
3http://cactus.nci.nih.gov/ncidb2/download.html
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In this experimentation, we compare the algorithms for finding all FCSs

and those for finding all closed FCSs. Table 3 shows the number of FCSs and

closed FCSs in the PTE collection. As we can see, the number of FCSs is much

greater than the number of closed FCSs. For example, in PTE using the 2% of

the collection size as support threshold, we found 136981 FCSs, but only 3741

of them were closed.

The gdFil, gRed, gSpan, and Gaston algorithms (for mining all FCSs) were

compared regarding their runtimes on the four molecular collections varying the

support threshold (see Fig. 9). Runtime rises for Gaston with the lowest support

thresholds and for NCI it was unable to complete the execution for support

thresholds smaller than 4% due to high memory requirements. Gaston needed

much more memory than the other tested algorithms, since it uses embedding

structures for storing useful and duplicate candidates. However, in the smallest

collection (PTE), the best results were achieved by Gaston. In CAN2DA99,

HIV, and NCI collections, the best runtimes were obtained by gdFil because it

does not store any duplicate candidate and it achieves fast isomorphism tests

using the DFSE structure. It is known that much of the time consumption in

gSpan and gRed is spent in subgraph isomorphism tests during the candidate

enumeration process. The gdFil algorithm got the best runtimes since it does

a full duplicate candidate pruning, and additionally it achieves fast subgraph

isomorphism tests using the DFSE structure.

On the other hand, the gdClosed, CloseGraph, and Moss-MoFa algorithms

(for closed FCS mining) were also compared in the molecular collections (see

Fig. 10). As we can see, the best runtimes in this experiment were obtained by

gdClosed showing that the combination of the full candidate pruning with the

early termination pruning allows to gdClosed having a good performance.
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4.2 Tests on synthetic datasets

As we can see in the previous section, molecular collections used for performance

evaluation have similar attributes (see Table 1). Therefore, performance evalu-

ation using molecular collections does not allow a deep study of the algorithm

performance.

Synthetic graph collections are also commonly used for performance evalua-

tions because these collections allow studying the performance of the algorithms,

depending on different attributes of the dataset, for example, the number of edge

labels or the size of the graphs according to the number of edges.

In our experiments, we use the synthetic graph generator proposed by Ku-

ramochi and Karypis [16], which has been used in several comparative studies

for graph mining [21, 23]. This generator allows us to build graph collections

varying the parameters: number of graphs in the collection (PD), average size

of graphs (PT ) in terms of the number of edges, number of vertex labels (PV ),

number of edge labels (PE), the number of potentially frequent subgraphs (PL),

and the average size of potentially frequent subgraphs (Pi).

Previously reported comparative studies in graph mining have fixed PL =

200 for building synthetic graph collections [16, 21, 23]. The values for the

parameter Pi are commonly taken in the interval 3 ≤ Pi ≤ 15. Specifically,

values among 3 ≤ Pi ≤ 6 have been used for building collections whose frequent

subgraphs are small regarding the average number of edges, while values in 10 ≤

Pi ≤ 15 have been used for generating collections with big frequent subgraphs.

For our experiments, we use PL ∈ {100, 200, 400, 800} and Pi ∈ {6, 8, 10, 12, 14}

for building synthetic graph collections.

The other parameters, were chosen around the mean value of the tested

real world collections. Table 4 shows all the tested values for these parameters

around their mean values, which appear underlined in each case. In each test,
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only one parameter is varied, and the other parameters are fixed to the mean

values.

The gdFil, gRed, gSpan, and Gaston algorithms (for mining all FCSs) were

compared in synthetic graph collections, using the aforementioned setup (see

Fig. 11). As we can see, the best runtimes were achieved by gdFil in almost

all the cases. However, there are some cases that should be explained. For

small values of PV and PE , for example PV = 10 or PE = 1, Gaston had better

runtimes than gdFil. The last happened because the usefulness of the cut and

cut distribution properties in gdFil is very limited when the number of labels

in vertices or edges is small. In these cases, the runtime of gdFil tends to be

similar to the runtime of gSpan.

On the other hand, a comparison among the gdClosed, CloseGraph, and

Moss-MoFa algorithms (for closed FCS mining) were presented in Table 12.

This comparison was made using the same parameters setup showed in Table 4.

The best runtimes were obtained by gdClosed in almost all the tests, achieving

the best results when PV and PE are greather than 40 and 4 respectively.

In summary, we can conclude that small values of PV and PE significatively

affect the performance of gdFil and gdClosed. However, both algorithms are a

good option for processing collections with PV ≥ 40 and PE ≥ 4. For the other

parameters, our algorithms have in general a good performance.

5 Conclusions

In this paper, two novel properties of the DFS code, which allows us to de-

fine boundaries between duplicate and useful candidates, were introduced and

proved. These properties are useful to remove all duplicate candidates, before

support calculation. Besides, a new kind of embedding structure (DFSE), which

allows us to reduce the cost of subgraph isomorphism tests, was also introduced.
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Based on the proposed properties and the new embedding structure, two new

FCS mining algorithms were introduced. The first one (gdFil) for finding the

whole set of frequent connected subgraphs, whereas the other one (gdClosed)

used the full candidate pruning in combination with the early termination prun-

ing for closed FCS mining. The pruning of all duplicate candidates (full can-

didate pruning) using the cut and cut distribution properties during candidate

enumeration allows reducing the cost of subgraph isomorphism tests without

storing duplicate candidates in the DFSE structure.

The experimental results over real world and synthetic datasets show that

the full candidate pruning allows to our proposed algorithms getting the better

performance than other well known algorithms. Specially, the improvement

achieved for our proposals can be appreciated for small support thresholds over

big datasets with many vertex and edge labels.

As future work, we are going to develop new ways for taking advantage of the

cut properties and the DFSE structure for finding other frequent graph based

patterns like maximal and approximate.
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Table 1: Real world datasets used in the experiments.

PD PT PV PE

PTE 340 27 66 4
CAN2DA99 32 557 28 69 4
HIV 42 689 28 63 3
NCI 237 771 22 78 4

Table 2: Number and size of graphs found for high and low thresholds in the
PTE collection.

High support thresholds Low support thresholds

threshold Number of
FCSs

Size of the
bigest FCS

threshold Number of
FCSs

Size of
bigest FCS

30% 75 9 3% 18 146 22

40% 62 9 4% 5 955 15

50% 37 7 5% 3 627 14

Table 3: Number of patterns mined by gdFil and gdClosed in the PTE collection
varying support thresholds.

Support threshold gdFil gdClosed
2% 136 981 3 741
3% 18 146 1 928
4% 5 955 1 284
5% 3 627 991
6% 2 138 739
8% 1 786 634

29



Table 4: Parameters settings for experimentation in synthetic graph collections.

Parameter Values
PD {500, 5K, 50K, 500K}
PT {5, 15, 25, 35, 45}
PV {10, 40, 70, 100, 130}
PE {1, 2, 4, 6, 8}
PL {100, 200, 400, 800}
Pi {6,8,10,12,14}

(a) A DFS tree. (b) Backward extensions. (c) Forward extensions.

Fig. 1: Example of partitions in the rightmost path extensions.
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Procedure gdFilExtensions(s, G, L, EX)

Input: s - DFS code, G - a graph of the collection D,
L - the embedding list L(s,G)
Output: EX - the extension set of s in G

foreach embedding tuple τ ∈ L do1

Mapping ← {(τ.k, τ.ϵ)};2

τc ← τ ;3

while τc.p ̸= λ do4

τc ← τc.p;5

Mapping ← Mapping ∪ {(τc.k, τc.ϵ)};6

end7

Let G′ ⊆ G be the subgraph which is contained in Mapping being8

isomorphic to s;
forall edge ek ∈ E(G) \E(G′) such that ek is rightmost extension of s9

do
if ek is compatible with its computational representation in G10

then ϵ→ +1;
else ϵ→ −1;11

L(s ⋄ ek, G)← L(s ⋄ ek, G) ∪ {(ek, ϵ, τ)};12

EX ← EX ∪ {ek};13

end14

end15

Fig. 2: Pseudo-code of the gdFilExtensions procedure.

(a) s1. (b) G0. (c) Embeddings of s1 and all of its ancestors.

Fig. 3: Example of the DFSE structure of s1 in a collection containing G0.
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Procedure gdFil(D, δ, S)

Input: D - graph collection, δ - support threshold
Output: S - mining results

Remove infrequent vertices and edges;1

S ← all frequent vertices;2

S1 ← all frequent 1-edge codes;3

forall code s ∈ S1 do4

Initialize the DFSE structure ES(s);5

gdFilMining(D,s,δ,S);6

D ← D \ s;7

if |D| < δ then break;8

end9

Fig. 4: Pseudo-code of the main procedure of gdFil.

Procedure gdFilMining(D, s, δ, S)

Input: D - graph collection, s - a minimum DFS code, δ - support
threshold

Output: S - mining results

S ← S ∪ {s};1

ME ← ∅;2

Initialize global cuts in ϵ, indicating the non-existence of cuts for3

ME = ∅;
forall pair (G,L) ∈ ES(s) do4

EX ← ∅;5

gdFilExtensions(s,G,L,EX);6

Remove from EX those extensions that are filtered by gSpan basic7

optimizations;
Remove from EX those extensions that are filtered by8

non-minimality conditions;
Remove from EX those extensions that are filtered by current global9

cuts;
Calculate local cuts of EX performing canonical form tests;10

Remove from EX the extensions in the duplicate partitions of EX;11

Update global cuts from local cuts;12

ME ←ME ∪EX;13

end14

Remove from ME non-frequent extensions, according to δ;15

forall extension e ∈ME do gdFilMining(D, s ⋄ e, δ, S);16

Fig. 5: Pseudo-code of the search space traversal in gdFil.
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Procedure gdClosed(D, δ, S)

Input: D - graph collection, δ - support threshold
Output: S - mining results

Remove infrequent vertices and edges;1

S ← all frequent vertices;2

S1 ← all frequent 1-edge codes;3

forall code s ∈ S1 do4

Initialize the DFSE structure ES(s);5

gdClosedMining(D,s,δ,S);6

D ← D \ s;7

if |D| < δ then break;8

end9

Fig. 6: Pseudo-code of the main procedure of gdClosed.
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Procedure gdClosedMining(D, s, δ, S)

Input: D - graph collection, s - a minimum DFS code, δ - support
threshold

Output: S - mining results

S ← S ∪ {s};1

ME ← ∅;2

Initialize global cuts in ϵ, indicating the non-existence of cuts for3

ME = ∅;
forall pair (G,L) ∈ ES(s) do4

EX ← ∅;5

gdClosedExtensions(s,G,L,EX);6

Remove from EX those extensions that are filtered by gSpan basic7

optimizations;
Remove from EX those extensions that are filtered by8

non-minimality conditions;
Remove from EX those extensions that are filtered by current global9

cuts;
Calculate local cuts of EX performing canonical form tests;10

Remove from EX the extensions in the duplicate partitions of EX;11

Update global cuts from local cuts;12

ME ←ME ∪EX;13

end14

Detect the extensions of s that have crossing situations in s;15

if s is closed then S ← S ∪ {s};16

Remove from ME non-frequent extensions, according to δ;17

forall extension e ∈ME do18

gdClosedMining(D, s ⋄ e, δ, S);19

Let g be the graph represented by the DFS code s;20

if L(g, e,D) = I(g,D) and early termination does not fail in e then21

return;
end22

Fig. 7: Pseudo-code of the search space traversal in gdClosed.
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Procedure gdClosedExtensions(s, G, L, EX, EA)

Input: s - DFS code, G - a graph of the collection D,
L - the embedding list L(s,G)
Output: EX - the extension set of s in G

foreach embedding tuple τ ∈ L do1

Mapping ← {(τ.k, τ.ϵ)};2

τc ← τ ;3

while τc.p ̸= λ do4

τc ← τc.p;5

Mapping ← Mapping ∪ {(τc.k, τc.ϵ)};6

end7

Let G′ ⊆ G be the subgraph which is contained in Mapping being8

isomorphic to s;
EA′ ← ∅;9

forall edge ek ∈ E(G) \ E(G′) such that ek is an extension of s do10

Let g be the graph represented by the DFS code s;11

I(g ⋄x ek, D)← I(g ⋄x ek, D) + 1;12

EA′ ← EA′ ∪ {ek};13

if ek is rightmost extension of s then14

if ek is compatible with its computational representation in G15

then ϵ→ +1;
else ϵ→ −1;16

L(s ⋄ ek, G)← L(s ⋄ ek, G) ∪ {(ek, ϵ, τ)};17

EX ← EX ∪ {ek};18

end19

end20

EA← EA ∪EA′;21

forall ek ∈ EA′ do L(g, ek, D)← L(g, ek, D) + 1;22

end23

Fig. 8: Pseudo-code of the gdClosedExtensions procedure.
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(a) PTE (b) CAN2DA99

(c) HIV (d) NCI

Fig. 9: Performance evaluation of gdFil, gRed, gSpan, and Gaston, in real world
datasets.
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(a) PTE (b) CAN2DA99

(c) HIV (d) NCI

Fig. 10: Performance evaluation of gdClosed, CloseGraph, and Moss-MoFa, in
real world datasets.
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(a) Varying PD. (b) Varying PT .

(c) Varying PV . (d) Varying PE .

(e) Varying Pi. (f) Varying PL.

Fig. 11: Performance evaluation of gdFil, gRed, gSpan, and Gaston, in synthetic
datasets.

38



(a) Varying PD. (b) Varying PT .

(c) Varying PV . (d) Varying PE .

(e) Varying Pi. (f) Varying PL.

Fig. 12: Performance evaluation of gdClosed, CloseGraph, and Moss-MoFa, in
synthetic datasets.
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