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Abstract. Frequent connected subgraph mining (FCSM) is an interest-
ing task with wide applications in real life. Most of the previous studies
are focused on pruning search subspaces or optimizing the subgraph iso-
morphism (SI) tests. In this paper, a new property to remove all duplicate
candidates in FCSM during the enumeration is introduced. Based on this
property, a new FCSM algorithm called gdFil is proposed. In our pro-
posal, the candidate space does not contain duplicates; therefore, we can
use a fast evaluation strategy for reducing the cost of SI tests without
wasting memory resources. Thus, we introduce a data structure to re-
duce the cost of SI tests. The performance of our algorithm is compared
against other reported algorithms.

1 Introduction

Frequent connected subgraph mining (FCSM) in collections of labeled graphs is
the process of finding connected subgraphs that occur frequently. Recently, this
topic has been an interesting theme in data mining researches with wide ap-
plications, including mining substructures from: chemical compound databases,
XML documents, citation networks, biological networks, and so forth [3].

The first frequent subgraph miner called AGM was introduced by Inokuchi
et al. for unconnected graphs [6]. This algorithm was followed by the FSG [8]
and AcGM [7] algorithms for mining frequent connected subgraphs.

To avoid overheads of the earlier algorithms, new pattern growth based algo-
rithms such as gSpan [11], MoFa [1], FFSM [5], and Gaston [9] were developed.
In all of these approaches, the emergence of duplicate candidates during the
mining is one of the major problems. The duplicate candidates are faced by
representing subgraphs with a unique code called canonical form (CF) and per-
forming CF tests. However, the computational complexity of a CF test is very
high. The DFS code (Depth First Search code) is an example of a promising



kind of CF for FCSM [11]. Recently, some properties of the DFS code which are
useful for reducing the number of candidates in FCSM were introduced and a
new algorithm called gRed based on these properties was described [2].

The subgraph isomorphism (SI) test is another hard subtask in FCSM. The
embedding structures (ES) used by MoFa, FFSM, and Gaston avoid this kind
of tests but using ES could be a problem if not enough memory is available.

The basic motivation of this work is to develop an integral solution for FCSM
facing, at the same time, the two hardest subtasks (CF tests and SI tests).
This solution will get better runtimes by removing all duplicate candidates and
building the DFSE structure only for useful candidates.

In this paper, we propose a novel cut property of the DFS code which allows
to remove all duplicate candidates in FCSM during the candidate enumeration.
Besides, we introduce an ES, called DFSE (DFS Embedding). Based on the cut
property and the DFSE structure a new algorithm called gdFil (graph duplicate-
filtering miner) is introduced.

The outline of this paper is as follows. Section 2 contains some basic concepts
and related work. The cut property of the DFS codes, the DFSE structure, and
the complete description of gdFil are introduced in section 3. The experimental
results are discussed in section 4. Finally, conclusions of the research and some
ideas about future directions are exposed in section 5.

2 Background

A DFS tree T is constructed when a DFS traversal in a graph G = 〈V,E〉 is
performed. Each DFS traversal (DFS tree) defines a unique order among all
the vertices; therefore, we can number each vertex according to this DFS order.
Thus, each edge can be represented by a 5-tuple, (i, j, li, l(i,j), lj) where i and j
are the numbers (subindices) of the vertices (vi and vj), li and lj are the labels
of these vertices respectively, and l(i,j) is the label of the edge connecting vi

and vj . If i < j it is a forward edge; otherwise it is a backward edge. In short,
the order relation e1 ≺e e2 holds if e1 appears before e2 in a DFS traversal.
When e1 and e2 have same source and destination vertices, they are compared
lexicographically using the order between labels ≺l (the last three components
in each 5-tuple).

The DFS code is a sequence of edges built from the DFS tree sorting the
edges according to ≺e. The order ≺e can be also extended to a lexicographic
order (≺s) between two DFS codes. The minimum DFS code is defined as the
minimum sequence among all DFS codes of the same graph according to ≺s [11].

Suppose that s is a minimum DFS code. An edge e is a rightmost path
extension of s if e connects the rightmost vertex with another vertex in the
rightmost path (backward extension); or it introduces a new vertex connected
from a vertex of the rightmost path (forward extension). In such cases, the DFS
code s′ = s ¦ e is the code obtained extending s by e; s′ is called a child of s or
s is called a parent of s′.



The set RE(s) of all children of s can be partitioned into several sets RE(s) =
B0 ∪ . . . ∪ Bn−1 ∪ F0 ∪ . . . ∪ Fn−1, where Bi denotes the set that contains the
backward extensions to the destination vertex vi, and Fi is the forward extension
set from vertex vi. For each vertex vi in the rightmost path, i 6= n− 1, the edge
fi denotes the forward edge from vertex vi lying in the rightmost path. The
notation e−1 is used to refer to the reverse edge of e.

The first two properties introduced in gRed [2] will be named non-minimality
conditions and the last one reuse condition.

1. Forward non-minimality condition: If e ∈ Fi(s) with i 6= n − 1 and
e ≺l fi, then s′ = s ¦ e is a non-minimum DFS code.

2. Backward non-minimality condition: If e ∈ Bi(s) and e−1 ≺l fi, then
s′ = s ¦ e is a non-minimum DFS code.

3. Reuse condition: Let E be one of the sets Fi(s) or Bi(s). If e, e′ ∈ E, then,
the following statements are true:
(a) if s ¦ e is a minimum DFS code and e ¹l e′, then s ¦ e′ is a minimum

DFS code;
(b) if s ¦ e is a non-minimum DFS code and e′ ¹l e, then s ¦ e′ is a non-

minimum DFS code.

The non-minimality conditions were used in gRed to filter the set RE(s)
reducing the number of candidates. The reuse condition states that a CF test is
not required for some candidates (unlike gSpan where CF tests are performed
for each frequent child of s).

3 Frequent connected subgraph mining

In this section, we introduce the cut property of the DFS code which is useful to
remove all the duplicate candidates in FCSM before support calculation (unlike
gRed where the reuse property are used after the supports of the candidates are
calculated [2]). Besides, the DFSE structure will be introduced in the next sec-
tion. Based on the cut property and the DFSE structure, a new FCSM algorithm
called gdFil is presented. The DFSE structure is used to speed up the SI tests
getting a better efficiency in the enumeration process and support calculation.

3.1 The cut property of the DFS codes

The cut property is derived from the reuse condition, which is applied to forward
and backward extensions as follows:

Theorem 1. Let s be a minimum DFS code, and E be one of the sets Fi(s) or
Bi(s) (the forward or backward extension set for a vertex vi respectively), and
suppose that E is in ascending order according to ≺e. If there are extensions in
E that produce non-minimum DFS codes then they are at the beginning of E.
Besides, if there are extensions that produce minimum DFS codes they are at the
end of E.



Proof. The proof is omitted due to space restriction.

Thus, each set Fi(s) or Bi(s) is divided in two partitions, the duplicate
partition (extensions that produce non-minimum DFS codes) and the useful
partition (extensions that produce non-minimum DFS codes). The extensions at
duplicate partition are called duplicate extensions and the extensions at useful
partition are called useful extensions.

This property states that there could be a non-minimum cut element being
the last in the duplicate partition, according to ≺e. Besides, in the same way,
there could be a minimum cut element being the first in the useful partition.
It should be noticed that these partitions could be empty; therefore, one of
those cut elements could not exist. If both elements exist, the non-minimum cut
element is the one immediately before the minimum cut element.

3.2 The DFSE structure

Let D = {G0, G1, . . . , GN−1} be a graph collection with N graphs which are
represented using adjacency lists. Let e be an edge belonging to a DFS code,
let G ∈ D be a graph in the collection, and let ek ∈ E(G) be an edge of G
where k (0 ≤ k < |E(G)|) is the edge identifier. We denote by e.l1, e.le, and e.l2
the labels of the first vertex, edge and second vertex of e respectively. We say
that e and ek are the same edge according to the labels (denoted as e =l ek) if
(e.l1, e.le, e.l2) = (ek.l1, ek.le, ek.l2) or (e.l1, e.le, e.l2) = (ek.l2, ek.le, ek.l1). In the
first case, we say that sign(e, ek) = +1, and in the second case sign(e, ek) = −1.

If e is a non-symmetric edge (e.l1 6= e.l2), the embedding list (EL) of e
regarding G denoted as L(e,G) is defined as follows:

L(e,G) = {(ek, ε, λ) | ek ∈ E(G), e =l ek and sign(e, ek) = ε} , (1)

where λ represents a null pointer. The third component in each EL element
will be used for those codes with more than one edge. If e is a symmetric edge
(e.l1 = e.l2), the function sign(e, ek) can take both values (+1 or −1). Thus, we
consider in L(e, G) any value (ek,±1, λ) for each ek ∈ E(G) such that e =l ek.

Let s be a minimum DFS code. If s is a code with only one edge e the EL of
s regarding G is denoted as L(s,G) = L(e,G).

As it is shown below (2), the EL L(s ¦ e,G) of a child of s is built from
L(s,G), during the execution of the procedure FindEmbedding (see Fig. 1). The
third component in the embedding tuples is a pointer to an embedding tuple of
the parent. The notations τ.k, τ.ε and τ.p are used to refer to the edge identifier,
sign and parent of the tuple τ respectively.

L(s ¦ e,G) = {(ek, ε, p) | ek ∈ E(G), e =l ek, sign(e, ek) = ε and p is a
pointer to a tuple in L(s,G)} .

(2)

Using the EL definition, we define the DFSE structure of any DFS code s
regarding the collection D as:

ES(s) = {(G,L) | G ∈ D, L = L(s, G) ∧ L 6= ∅} . (3)



Procedure MainLoop(D, δ, S)

Input: D - graph collection, δ - support threshold
Output: S - mining results

Remove infrequent vertices and edges;1

S ← all frequent vertices;2

S1 ← all frequent 1-edge codes;3

forall code s ∈ S1 do4

Initialize the DFSE structure ES(s);5

SubgraphMining(D,s,δ,S);6

D ← D \ s;7

if |D| < δ then break;8

end9

Procedure SubgraphMining(D, s, δ, S)

Input: D - graph collection, s - a minimum DFS code,
δ - support threshold

Output: S - mining results

S ← S ∪ {s};1

Enumerate(D, s, RE);2

forall extension e ∈ RE do3

if s � e.support≥ δ then4

SubgraphMining(D, s � e, δ, S);
end5

Procedure FindEmbedding(s, G, L, REG)
Input: s - DFS code, G - a graph of the collection,
L - the embedding list L(s, G)
Output: REG - the extension set of s in G

foreach embedding tuple τ ∈ L do1

Mapping← {(τ.k, τ.ε)};2

τc ← τ ;3

while τc.p 6= λ do4

τc ← τc.p;5

Mapping← Mapping ∪ {(τc.k, τc.ε)};6

end7

Let G′ ⊆ G be the subgraph which is contained in8

Mapping being isomorphic to s;
forall edge ek ∈ E(G) \ E(G′) such that ek is9

rightmost extension of s do
if ek is compatible with its computational10

representation in G then ε→ +1;
else ε→ −1;11

L(s � ek, G)← L(s � ek, G) ∪ {(ek, ε, τ)};12

REG← REG ∪ {(ek, L(s � ek, G))};13

end14

end15

Procedure Enumerate(D, s, RE)
Input: D - graph collection,s - a minimum DFS code
Output: RE - the filtered extension set ofs

forall vertex indexi in the rightmost path ofs do1

fMin[i]← fNon[i]← null;2

bMin[i]← bNon[i]← null;3

end4

forall pair (G, L) ∈ ES(s) do5

FindEmbedding(s, G, L, REG);6

forall pair (e, Le) ∈ REG do7

if e does not satisfies the non-minimality8

conditionsthen
if (e is a forward edge)then9

if IsAllowable(e, e.i, s, fMin, fNon)10

then
ES(s�e)← ES(s�e)∪{(G, Le)};11

RE ← RE ∪ {e};12

end13

else14

if IsAllowable(e, e.j, s, bMin, bNon)15

then
ES(s�e)← ES(s�e)∪{(G, Le)};16

RE ← RE ∪ {e};17

end18

end19

end20

end21

end22

Function IsAllowable(e, i, s, min[·], non[·])

Input: e - an extension, i - a vertex index,
min[·] and non[·] the cut elements arrays
Output: true or false

if non[i] = null or e �l non[i] then1

if min[i] = null or e ≺l min[i] then2

result← isMin (s � e);3

if result then min[i] = e;4

else non[i] = e;5

return result;6

end7

else return true;8

end9

return false;10

Fig. 1. Complete description of gdFil.

The use of ES avoids all SI tests since the whole embedding of a candidate
can be obtained traversing the third component (a pointer to its parent tuple)
of each embedding tuple (see lines 2–8 of FindEmbedding).

3.3 The gdFil Algorithm

The Fig. 1 outlines the pseudo-code of the gdFil algorithm. Note that D repre-
sents the graph collection, δ is the support threshold and S contains the mining



result. The procedure starts by removing all non-frequent vertices and edges.
Next, for each frequent edge its ES is initialized using (3). Later, the procedure
SubgraphMining is invoked for each frequent edge. At the end of each iteration
the edge is dropped from the collection; that is, it will not be used anymore as
a possible extension in the next iterations.

The procedure SubgraphMining recursively generates all candidate graphs
(DFS codes); this process is done while the generated code is frequent. For each
minimum DFS code s, its extension set RE is calculated using the procedure
Enumerate. In gdFil the set RE only contains useful extensions, since duplicate
extensions are eliminated in Enumerate. This is the a difference of gdFil with
regard to gSpan and gRed.

In the procedure Enumerate, all occurrences of each DFS code s in the graph
collection are scanned to detect only extensions that occur in the collection (see
lines 5–7). The structure ES(s) is scanned using FindEmbedding to efficiently
locate the possible children. The lines 11 and 16 create and update the child ES.

The non-minimality conditions were also used in gdFil to filter directly some
duplicated extensions (see line 8 of Enumerate). The other main contribution
of gdFil lies in the lines 9–19 since the function IsAllowable allows to filter
all duplicate candidates. During the scanning to keep the current cut elements,
four arrays fMin, fNon, bMin, and bNon are used. The elements in these
arrays represent the non-minimum and minimum cuts for forward and backward
extension sets. These elements are initialized as null (see lines 1–4 of Enumerate).
Each vertex vi in the rightmost path of s is represented in one position of each
array.

The function IsAllowable uses the cut property to decide if several exten-
sions are useful or duplicate, without CF test (see lines 1–2). Nevertheless, if an
element is, according to ≺e, after than the non-minimum cut and before than
the minimum cut it should be tested through isMin(s) function, to decide if
it represents a minimum DFS code. In this case, the cut elements are updated
according to the test result. The function isMin(s) is the same function used in
gSpan and gRed [11, 2]. The lines 10 and 15 of Enumerate, invoke the function
IsAllowable for the forward and backward extensions respectively. The fourth
and fifth arguments must be chosen according to the case. The second argument
is the initial vertex for forward extensions or the destination vertex for backward
extensions, see the definition of Fi(s) and Bi(s) in section 2.

The DFSE structures are calculated and stored only for useful candidates
since the enumeration strategy of gdFil allows to remove all duplicate candidates.

4 Experimental results

We compared gdFil against gRed, gSpan and Gaston; the last two algorithms
were taken from the Java framework [10] which is distributed under GNU license,
gRed and gdFil were implemented by us and their implementations are compat-
ible with this framework. All the experiments were done using an Intel Core 2
Duo PC at 2.2 GHz with 4 GB of RAM using a 64-bits Debian GNU/Linux dis-



tribution. The IBM Java Virtual Machine (JVM) Version 6 was used to run the
algorithms. The maximum heap memory space of JVM was assigned in 3.2GB.
Thus, we remove the influence of operative system swap operations during the
executions.

The CAN2DA993, HIV4, and the entire NCI5 datasets were used to determine
how the algorithms scale. These graph collections have been commonly used in
different works for performance evaluations [10].

Fig. 2. Runtime with CAN2DA99, HIV, and NCI datasets varying the support thresh-
old.

The algorithms were compared regarding their runtimes on the three col-
lections varying the support threshold (see Fig. 2). In order to illustrate how
the algorithms scale with a lot of candidates, only low support thresholds were
considered. These kind of thresholds are very important in data mining applica-
tions. For example, there are some applications like classification and clustering
where frequent complex graph structure are important [4], and these complex
structures only can be found with low support thresholds.

The runtime rises for Gaston for the lowest support thresholds and it was
unable to complete the execution for support thresholds less than 4% in NCI
due to memory requirements. Gaston needed much more memory than the other
tested algorithms, since it uses ES for useful and duplicated candidates. The best
runtimes were obtained by our algorithm because it does not store any duplicate
candidate and achieve fast isomorphism tests using the DFSE structure. It is
known that much of the time consumption in gSpan and gRed is used by SI
tests during the candidate enumeration process. Since gdFil can achieve fast SI
tests using the DFSE structure it got the best runtimes.

5 Conclusions

In this paper, a cut property of the DFS code which is useful to remove all
the duplicate candidates in FCSM during the candidate enumeration was intro-
3 http://dtp.nci.nih.gov/docs/cancer/cancer data.html
4 http://dtp.nci.nih.gov/docs/aids/aids data.html
5 http://cactus.nci.nih.gov/ncidb2/download.html



duced. This property allows to define boundaries between useful and duplicate
candidates during the pattern growth process.

A new FCSM algorithm called gdFil was designed using the cut property.
Besides, we introduce a new ES, called DFSE, to reduce the cost of SI tests.

We compared gdFil against gRed, gSpan and Gaston. The experimentation
showed that our proposal achieves the best performance.

As future work, we are going to develop new ways for taking advantage of
the cut property and the DFSE structure in order to achieve better performance
in graph mining.
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Comments describing the changes

1. The name of section 2 was changed to “Background” attending the sugges-
tion 1 and 3 of the second reviewer.

2. The size of Fig. 2 was increased in order to improve the image quality at-
tending the suggestion 2 of the second reviewer.

3. The last paragraph of section 3 was summarized in order to free space. It
allows to include a new paragraph before the second last paragraph of the
introduction. This new paragraph contains the motivation (suggestion 4 of
the second reviewer) of our work since we do not have more space to include
a complete motivation section.

4. The discussion about experimental results (the last suggestion of the second
reviewer) was not expanded due to lack of space.


