
Mining Frequent Connected Subgraphs
Reducing the Number of Candidates

Andrés Gago Alonso1,2, José Eladio Medina Pagola1,
Jesús Ariel Carrasco-Ochoa2, and José Fco. Mart́ınez-Trinidad2

1 Advanced Technologies Application Center (CENATAV),
7a] 21812 e/ 218 y 222, Rpto. Siboney, Playa, CP: 12200, La Habana, Cuba.

{agago,jmedina}@cenatav.co.cu
2 National Institute of Astrophysics, Optics and Electronics (INAOE),

Luis Enrique Erro No. 1, Sta. Maŕıa Tonantzintla, Puebla, CP: 72840, Mexico.
{ariel,fmartine}@inaoep.mx

Abstract. In this paper, a new algorithm for mining frequent connected
subgraphs called gRed (graph Candidate Reduction Miner) is presented.
This algorithm is based on the gSpan algorithm proposed by Yan and
Jan. In this method, the mining process is optimized introducing new
heuristics to reduce the number of candidates. The performance of gRed
is compared against two of the most popular and efficient algorithms
available in the literature (gSpan and Gaston). The experimentation on
real world databases shows the performance of our proposal overcoming
gSpan, and achieving better performance than Gaston for low minimal
support when databases are large.

1 Introduction

Nowadays, due to the rapid scientific and technological advances, there are great
creation, storage and data distribution capacities. This situation has boosted
the necessity of new tools to transform this big amount of data into useful
information or knowledge for decision makers. When these data are complex
and structured, this transformation requires techniques that usually have high
time and memory requirements. Examples of these techniques are those related
to frequent subgraph mining; i.e., the process of finding subgraphs that occur
frequently in a collection of graphs.

Frequent subgraph mining has become an important topic in data mining re-
searches with wide applications [3], including mining substructures from chemical
compound databases, XML documents, citation networks, biological networks,
etc. As consequence several algorithms have been proposed to find all frequent
connected subgraphs in collections of labeled graphs [6, 7, 11, 2, 4, 8].

Labeled graphs can be used to model relations among data in the afore-
mentioned applications because labels can represent attributes of entities and
relations among themselves. For example in chemistry, the different kinds of
atoms and bonds in a chemical compound can be modeled by vertex and edge
labels respectively.

The first frequent subgraph miner called AGM was introduced by Inokuchi et
al. for unconnected graphs [5]. This algorithm was followed by the FSG algorithm
[7] and AcGM [6] (an adaptation of AGM), for mining frequent connected sub-
graphs. These algorithms have the same setup as the original Apriori algorithm
for mining frequent itemsets [1].

To avoid supposed overheads incurred in the earlier algorithms, new pattern
growth based algorithms such as gSpan [11], MoFa [2], FFSM [4] and Gaston [8]
were developed. In [10] these algorithms were compared in a common framework.
In this experimentation, the four algorithms were competitive among themselves,
although Gaston and MoFa were the fastest and slowest algorithms respectively,
in almost all tests. On the other hand, gSpan was the best algorithm regarding
its memory requirements. The embedding structures used by MoFa, FFSM and
Gaston could cause problems if not enough memory is available or if the memory
throughput is not high enough.

In this paper, a new pattern growth algorithm called gRed (graph Candidate
Reduction Miner) is introduced. This algorithm is based on the gSpan scheme;
but using novel properties of the DFS code that allows to reduce the number of
candidates for optimizing the mining process.

The basic outline of this paper is as follows. Section 2 is dedicated to the
related work, it includes the basic concepts introduced by gSpan algorithm.
The details of gRed algorithm are discussed in the section 3. The experimental
results are presented in section 4. Conclusions of the research and some ideas
about future directions are exposed in section 5.

2 Preliminaries

In gRed, each candidate graph is represented by its minimum DFS (Depth First
Search) code. This kind of canonical representation, based on DFS graph traver-
sal, was introduced in gSpan [11]. Some concepts introduced in gSpan are re-
quired for understanding our algorithm; therefore, we include them in section 2.1.

2.1 Basic gSpan concepts

The basic concepts we will use in this paper are the following.
DFS Tree. A DFS tree T is constructed when a DFS traversal in a graph

G = 〈V, E〉 is performed. G can have different DFS trees because there are more
than one DFS traversal. Each DFS traversal (DFS tree) defines a unique order
among all the vertices; therefore, we can number each vertex according to this
DFS order. The root and the right most vertex in T are v0 and vn respectively.
The right most path is the straight path from v0 to vn in T . The forward edge
set F (T) contains all the edges in T , and the backward edge set B(T) contains
the edges which are not in T .

DFS Code. The DFS code is a sequence of edges built from the DFS Tree.
This sequence is obtained considering the destination vertices in F (T) according
to the DFS order. The backward edges from a vertex are inserted just before

its forward edges; if the vertex has several backward edges, these are included
in the DFS order of their destination vertices. Multiple edges between same
vertices are ordered according to the lexicographic order (≺l) of its labels. These
considerations for building the sequence define the following linear order (≺e)
between two edges.

Procedure MainLoop(D, δ, S)

Input: D - database, δ - support threshold
Output: S - mining results

Remove infrequent vertices and edges;1

S ← S1 ← all frequent 1-edge codes2

forall code s ∈ S1 do3

Initialize the TID list s.L by the graphs which contains the edge of s;4

SubgraphMining(D,s,δ,S);5

D ← D \ e;6

if |D| < δ then break;7

end8

Procedure SubgraphMining(D, s, δ, S)

if not isMin(s) then return;1

S ← S ∪ {s};2

Enumerate(D, s, RE);3

forall edge extension e ∈ RE do4

if s ¦ e.support ≥ δ then SubgraphMining(D, s ¦ e, δ, S);5

end6

Procedure Enumerate(D, s, RE)

forall graph g ∈ s.L do1

Enumerate the next occurrence of s in g;2

forall right most extension e of s do3

s ¦ e.L ← s ¦ e.L ∪ {g};4

RE ← RE ∪ {e};5

end6

if any occurrence of s in g are not covered then goto line 2;7

end8

Fig. 1. General description of gSpan algorithm.

DFS lexicographic order. For simplicity, each edge can be represented by
a 5-tuple, (i, j, li, l(i,j), lj) where i and j are the subindices of the vertices (vi

and vj), li and lj are the labels of these vertices respectively, and l(i,j) is the
label of the edge. If i < j it is a forward edge; otherwise it is a backward edge.
In summary, the inequality e1 ≺e e2 holds (assume that e1 = (i1, j1, . . .) and
e2 = (i2, j2, . . .)) if and only if one of the following statements is true:

– e1, e2 ∈ F (T) and j1 < j2 or i1 > i2 ∧ j1 = j2;
– e1, e2 ∈ B(T) and i1 < i2 or i1 = i2 ∧ j1 < j2;
– e1 ∈ B(T), e2 ∈ F (T) and i1 < j2;
– e1 ∈ F (T), e2 ∈ B(T) and j1 ≤ i2;
– i1 = i2, j1 = j2 and e1 ≺l e2.

The lexicographic order ≺l compares the edges e1 and e2 regarding the last three
components in each 5-tuple. The vertex label li gets first priority, the edge label
l(i,j) gets the second, and the vertex label lj gets the third to determine the
order between two edges.

The order ≺e can be also extended to a lexicographic order (≺s) to com-
pare two edge sequences (two DFS codes). Let s1 = (a1, a2, . . . , am) and s2 =
(b1, b2, . . . , bn) be two DFS codes. We say that s1 ≺s s2 if one of the following
conditions is true:

∃t,∀k < t, ak = bk, and at ≺e bt ; (1)
m < n and ∀k ≤ m, ak = bk . (2)

Minimum DFS Code. It is defined as the minimum sequence according to
the order ≺s among all DFS codes of the same graph.

Rightmost path extension. Given a DFS code s and an edge e, e is a
rightmost path extension of s if e connects the rightmost vertex with another
vertex in the rightmost path (backward extension); or it introduces a new vertex
connected from a vertex of the rightmost path (forward extension). In such cases,
the DFS code s′ = s¦ e is the code obtained extending s by e; s′ is called a child
of s or s is called a parent of s′.

gSpan guarantees the completeness of mining results only working with the
minimum DFS codes, pruning non minimal children in the solution space. Fig. 1
describes the pseudo-code of gSpan. This pseudo-code is an integration of the
algorithm descriptions presented in [11, 12].

All pattern growth algorithms generate duplicated candidates during the enu-
meration process. In gSpan, the duplicated candidates are non-minimal codes.
Instead of calculating the minimum DFS code of s from all possible DFS codes,
picking up the smallest one and comparing it against s, gSpan defines a more
efficient function isMin(s) in line 1 of SubgraphMining. A heuristic search was
designed using the DFS lexicographic order. Whenever some prefix of a DFS is
generated and it is less than s, then s is not minimal and the search concludes.

For support calculation and candidate enumeration, gSpan uses a TID list.
The TID list (Transaction ID list) contains the ID of each graph in the database
that holds the corresponding subgraph. In the procedure Enumerate, s.L is
used to determine the possible extension set for s, performing subgraph iso-
morphism tests to find all the embeddings of s in each graph in s.L. In line 5 of
SubgraphMining, the support of s ¦ e is the length of s ¦ e.L.

3 The gRed algorithm

The gRed algorithm can also be described using the pseudo-code of Fig. 1. Only
the procedures SubgraphMining and Enumerate are changed by new procedures
gRed-SubgraphMining and gRed-Enumerate respectively. Novel properties of
the DFS codes introduced in the following section are used by the new procedures
for optimizing the mining process.

3.1 DFS Codes

Suppose that s = e0, e1, . . . , em is a minimum DFS code. The set RE(s) of all
rightmost path extensions (see section 2.1) of s can be partitioned into three
sets B(s) (backward extensions), FV (s) (forward extensions from the rightmost
vertex) and FN(s) (forward extensions from a non rightmost vertex in the right
most path), RE(s) = B(s) ∪ FV (s) ∪ FN(s) (see Fig. 2). Thus, the forward
extensions can be represented by F (s) = FV (s) ∪ FN(s).

Let vi be a vertex in the right most path, let vn be the right most vertex
in s and let Fi(s) be the forward extension set from vertex vi. If vi 6= vn we
can use FNi(s) to refer to Fi(s). Similarly, we use Bi(s) to denote the set that
contains the backward extensions to the destination vertex vi. For example, in
Fig. 2 the right most path is (v0, v4, v6); therefore, we have FV (s) = F6(s),
FN(s) = F0(s) ∪ F4(s) and B(s) = B0(s) ∪B4(s).

If vi 6= vn, we denote fi as the forward edge from vi lying in the right most
path. For each edge e, we use e−1 to refer to the reverse edge of e. For example
in Fig. 2, we have f4 = (4, 6, B, , C) and f−1

4 = (6, 4, C, , B).

Fig. 2. Partitions in the rightmost path extensions, (A) example of a DFS tree, (B)
the forward extensions FV (s) ∪ FN(s) and (C) the backward extensions B(s).

The following two results are sufficient conditions for a child to be non-
minimal. Both statements can be used by the procedure gRed-Enumerate to
filter the possible extensions from a DFS code s.

Proposition 1. Let s be a minimal DFS code. If e ∈ FNi(s) and e ≺l fi, then
s′ = s ¦ e is a non-minimal child of s.

Proof. Let h be an integer number such that eh = fi. The edges eh and e
start from vi and they are forward edges in s′. Therefore, we can perform a
DFS traversal visiting first e and then eh or vice versa. If e is visited im-
mediately before than eh, the resulting DFS code has the following format
s′1 = e0, . . . , eh−1, e, e

′
h, . . . , e′m, where e′j is ej with another subindices for each

j ≥ h. The codes s′ and s′1 have the same prefix e0, . . . , eh−1 and we are consid-
ering that e ≺l eh; therefore, by the condition (1), s′1 ≺s s′. Thus, we conclude
that s′ is a non-minimal child of s. ut

The proposition 1 allows to characterize the non-minimality of certain for-
ward extensions. Similar results for backward extensions are showed in proposi-
tion 2.

Proposition 2. Let s be a minimal DFS code. If e ∈ Bi(s) and e−1 ≺l fi, then
s′ = s ¦ e is a non-minimal child of s.

Proof. Similarly to the proof of the proposition 1, h is the integer number such
that eh = fi. We can perform a DFS traversal visiting first e−1 and then eh or
vice versa. If e−1 is visited immediately before than eh, the resulting DFS code
have the following format s′1 = e0, . . . , eh−1, e

−1, e′h, . . . , e′m. The codes s′ and
s′1 have the same prefix e0, . . . , eh−1 and we assume that e−1 ≺l eh; therefore,
s′1 ≺s s′. Thus, we conclude that s′ is a non-minimal child of s. ut

In gSpan, a duplicate test (minimality test) is performed for each frequent
child of s, i.e. the number of such tests is |RE(s)|. Let RE0(s) be the extension
set obtained from RE(s) by removing the extensions whose non-minimality is
guaranteed according to the propositions 1 and 2. The algorithm gRed only
considers the extensions in RE0(s).

It is not always necessary to perform the duplicate test for each child of s
in RE0(s). The following propositions allow to avoid some minimality tests in
the context of the DFS codes. The procedure gRed-SubgraphMining uses this
properties to speedup the mining process.

Proposition 3. Let s be a minimal DFS code and let e, e′ ∈ Fi(s) be two forward
extensions of s by the same vertex vi. Then, the following statements are true:

1. if s ¦ e is a minimal child and e ¹l e′, then s ¦ e′ is a minimal child;
2. if s¦e is a non-minimal child and e′ ¹l e, then s¦e′ is a non-minimal child.

Proof. Let us proof separately each case. We assume that s is the edge sequence
e0, e1, . . . , em.

In the first case, we have that s¦e is a minimal child and e ¹s e′. Suppose that
s¦e′ is a non-minimal child, then there is at least one code s1 = a0, a1, . . . , am+1

such that s1 ≺s s ¦ e′. Using the definition of ≺s (see section 2.1), there is an
integer t, 0 ≤ t ≤ m such that ak = ek for all k < t, and at ≺e et. As it can be
noticed, t < m+1 because s is a minimal DFS code. Thus, by the condition (1),
s1 ≺s s.

Since e and e′ start from the same vertex, we can replace the edge representing
e′ in s1 by the edge e. Assume s1 as the code obtained when replacing of e′ by e in
s1; this code is a valid one for the graph coded by s¦e and we have s′1 ≺s s1 ≺s s.
Using the condition (2), s′1 ≺s s ≺s s ¦ e. Then, s ¦ e is a non-minimal child of
s, representing a contradiction. Therefore, the initial assumption (s ¦ e′ is a
non-minimal child) must be false. Thus, we conclude the proof for the first case.

In the second case, we have that s ¦ e is a non-minimal child and e′ ¹s e.
Then, there is at least one code s1 = a0, a1, . . . , am+1 such that s1 ≺s s ¦ e′. Let
t be the integer such that 0 ≤ t ≤ m, ak = ek for all k < t, and at ≺e et. Thus,
by the condition (1), we have s1 ≺s s. Since e and e′ start from the same vertex,
we can replace the edge representing e in s1 by the edge e′. The resulting code
(assume it is s′1) is a valid DFS code for the graph coded by s ¦ e′ and we have
s′1 ≺s s1 ≺s s ≺s s ¦ e′. Therefore, s ¦ e′ is a non-minimal child. ut

Proposition 4. Let s be a minimal DFS code and let e, e′ ∈ Bi(s) be two back-
ward extensions of s with destination vertex vi. Then, the following statements
are true:

1. if s ¦ e is a minimal child and e ¹l e′, then s ¦ e′ is a minimal child;
2. if s¦e is a non-minimal child and e′ ¹l e, then s¦e′ is a non-minimal child.

Proof. The proof is similar to that given for proposition 3. ut

The last two propositions state that the minimality tests are not required in
some elements of Bi(s) or Fi(s). The extensions in RE0(s) are sorted according
to the aforementioned order ≺e, firstly the elements in B0(s), . . . , Bn(s), and
finally the elements in Fn(s), . . . , F0(s). Each set Bi(s) or Fi(s) is ordered inter-
nally by the lexicographic order ≺l. Under the proposition 3, we only need to
find the minimal extension e ∈ Fi(s) such that its corresponding predecessor ex-
tensions in Fi(s) are non-minimal. The successors of e in Fi(s) are also minimal
extensions; therefore, the minimality tests are not required. Similar observations
might be indicated for each Bi(s) using the proposition 4.

These four propositions were not used in the original gSpan algorithm de-
scribed in [11, 12]. In the following section we illustrate how the aforementioned
properties are used to design the gRed algorithm.

3.2 The algorithm

The Fig. 3 outlines the pseudo-code of the gRed algorithm. Note that D repre-
sents the graph database, δ is the minimum support threshold and S contains
the mining result.

gRed-MainLoop is quite similar to the procedure MainLoop of gSpan. It starts
by removing all infrequent vertices and edges. Next, for each frequent edge its
TID list is initialized before the gRed-SubgraphMining is invoked. At the end
of each iteration the edge is dropped from the database, i.e. it will not be used
as possible extensions in the next iterations.

Procedure gRed-MainLoop(D, δ, S)

Input: D - database, δ - support threshold
Output: S - mining results

Remove infrequent vertices and edges;1

S ← S1 ← all frequent 1-edge codes2

forall code s ∈ S1 do3

Initialize the TID list s.L by the graphs which contains the edge of s;4

gRed-SubgraphMining(D,s,δ,S);5

D ← D \ e;6

if |D| < δ then break;7

end8

Procedure gRed-SubgraphMining(D, s, δ, S)

S ← S ∪ {s};1

gRed-Enumerate(D, s, RE);2

forall extensions set E, might be RE.Bi or RE.Fi do3

Scan the first elements in E according to the order ≺e, removing the4

non-minimal extensions;
forall extension e ∈ E do5

if s ¦ e.support ≥ δ then gRed-SubgraphMining(D, s ¦ e, δ, S);6

end7

end8

Procedure gRed-Enumerate(D, s, RE)

forall graph g ∈ s.L do1

Enumerate the next occurrence of s in g;2

forall right most extension e of s do3

i ← e.i;4

fi ← the forward edge starting in i and lies in the right most path;5

if e is a forward edge and e ≥l fi then /* See proposition 1 */6

s ¦ e.L ← s ¦ e.L ∪ {g};7

RE.Fi ← RE.Fi ∪ {e};8

end9

if e is a backward edge and e−1 ≥l fi then /* See proposition 2 */10

s ¦ e.L ← s ¦ e.L ∪ {g};11

RE.Bi ← RE.Bi ∪ {e};12

end13

end14

if any occurrence of s in g are not covered then goto line 2;15

end16

Fig. 3. General description of gRed algorithm.

The procedure gRed-SubgraphMining recursively generates all candidate
codes (graphs), this process is done while the generated code is frequent. Firstly,
for each minimum DFS code s its extension set ER0(s) is calculated using
the procedure gRed-Enumerate. The propositions 3 and 4 are used in gRed-
SubgraphMining for reducing the number of expensive minimality tests regard-
ing gSpan and guaranteeing the completeness in the mining result. The min-
imality test in line 4 is performed using the same isMin(s) function used in
gSpan (see section 2.1). In gRed the isMin(s) function is used only for the first
extensions of each Bi(s) or Fi(s) while in gSpan the test is performed for every
child of s.

In the procedure gRed-Enumerate, all occurrences of s in each graph of the
TID list s.L are enumerated. Thus, all the possible extensions of s in the database
are generated. Using the propositions 1 and 2, some non-minimum extensions
are filtered. For the specific sub-graph isomorphism testing procedure of line 2,
we use the same enumerating engine proposed by gSpan in [12].

4 Experimental results

All the experiments were done using an Intel Core 2 Duo PC at 2.2 GHz with
2 GB of RAM. We compare gRed only against gSpan and Gaston; both were
implemented in a common Java framework [10] which is distributed under GNU
license. Our implementation of gRed is compatible with this framework. The
SUN Java Virtual Machine (JVM) 1.5.0 was used to run the algorithms.

Fig. 4. Runtime with datasets PTE, CAN2DA99, HIV and NCI varying the minimum
support.

First of all, in order to show that the algorithm implementations get approx-
imately the same results as those published in [8, 10] we retested the algorithms
as in those works. The performance was retested using PTE [9] and CAN2DA993

datasets. The results in both datasets are included adding the performance of
gRed.

Fig. 5. The number of duplicated candidates found in datasets PTE, CAN2DA99, HIV
and NCI varying the minimum support.

The NCI4 and HIV5 datasets are used to determine how the algorithms scale
when the database size increases. Commonly, these four datasets have been used
in different works for performance evaluations [10].

The runtime for the algorithms was recorded varying the support threshold
for the four datasets. A comparison of gRed, gSpan and Gaston regarding its
execution times are showed in Fig. 4. In order to illustrate how the algorithms
scale with a lot of candidates, only low support thresholds were considered. The
runtime rises for Gaston on large databases (CAN2DA99, HIV and NCI) for these
minimal supports. Besides, Gaston was unable to complete the execution for low
minimal supports (less than 3% in CAN2DA99, 5% in HIV and 6% in NCI) due
to memory requirements. Gaston needed much more memory than the other
tested algorithms (see Fig. 6). However, in the smallest database (PTE), the
best results were achieved by Gaston. The best runtimes on the large databases
were obtained by gRed and gSpan for the evaluated support thresholds.

3 http://dtp.nci.nih.gov/docs/cancer/cancer data.html
4 http://cactus.nci.nih.gov/ncidb2/download.html
5 http://dtp.nci.nih.gov/docs/aids/aids data.html

As we can see, gRed beats gSpan in all tests. It is known that much of
the time consumption in gSpan is used by subgraph isomorphism tests during
the candidate enumeration process. Since gRed also uses this kind of tests, it
has similar behavior. However, gRed shows significant improvements when the
database is large. In PTE the improvement achieved by gRed is even greater
since the number of duplicate candidates declines considerably (see Fig. 5).

The algorithms gRed and gSpan are also compared regarding the number
of duplicated candidates in Fig. 5. The pruning strategies used to minimize
the number of duplicates in Gaston is very different from those used by gRed
and gSpan. Gaston is not included in this comparison to highlight the differences
between gRed and gSpan. The number of duplicates in all cases were significantly
reduced by gRed; even in PTE for minimal support = 2, it reduces almost 60% of
the duplicates regarding gSpan. This improvement corresponds to the runtimes
of Fig. 4; nevertheless, the runtime improvement was not even greater because
subgraph isomorphism tests are time-consuming. This result suggests that, if
gRed is combined with the evaluation strategies of the other algorithms (for
example the embedding structures used in Gaston), we might achieve better
runtime scores.

Fig. 6. Memory usage on the HIV dataset varying the minimum support.

The memory consumption was recorded varying the support threshold on
the HIV dataset (see Fig. 6). We choose HIV in order to show an example of the
memory problem of Gaston for low minimal support in correspondence to the
runtimes of Fig. 4. The improvement of gRed regarding memory requirement
can be appreciated in Fig. 6.

5 Conclusions

In this paper, a new algorithm called gRed, for frequent connected subgraph
mining, was introduced. Novel properties of the DFS code, that allow to reduce
the number of candidates during the mining process, were studied and imple-
mented. In this research, we show that the DFS code has not been sufficiently
studied and new properties can be found to improve the mining process.

We compared gRed against two reported algorithms. The experimentation
showed that our proposal overcome gSpan in every tests. In the experiments,
gRed and gSpan achieved better performance evaluations than Gaston for low
minimal support when databases are large.

As future work, we are going to develop hybrid approaches of gRed in com-
bination with evaluation strategies of other algorithms like Gaston.

References

1. Agrawal, R. and Srikant, R.: Fast Algorithms for Mining Association Rules, In Pro-
ceedings of the 1994 International Conference on Very Large Data Bases (VLDB’94),
Santiago, Chile, pp 487-499, 1994.

2. Borgelt, C. and Berthold, M.R.: Mining Molecular Fragments: Finding Relevant
Substructures of Molecules, In Proceedings of the 2002 International Conference on
Data Mining (ICDM’02), Maebashi, Japan, pp. 211-218, 2002.

3. Han, J., Cheng, H., Xin, D. and Yan, X.: Frequent Pattern Mining: Current Status
and Future Directions, Data Mining and Knowledge Discovery (DMKD’07), 10th
Anniversary Issue, Vol. 15, Number 1, pp. 55-86, 2007.

4. Huan, J., Wang, W. and Prins, J.: Efficient Mining of Frequent Subgraph in the
Presence of Isomorphism, In Proceedings of the 2003 International Conference on
Data Mining (ICDM’03), Melbourne, FL, pp. 549-552, 2003.

5. Inokuchi, A., Washio and T., Motoda, H.: An Apriori-based Algorithm for Mining
Frequent Substructures from Graph Data, In Proceedings of the 2000 European
Symposium on the Principle of Data Mining and Knowledge Discovery (PKDD’00),
Lyon, France, pp. 13-23, 2000.

6. Inokuchi, A., Washio, T., Nishimura and K., Motoda, H.: A Fast Algorithm for Min-
ing Frequent Connected Subgraphs, Technical Report RT0448, In IBM Research,
Tokyo Research Laboratory, pp. 10, 2002.

7. Kuramochi, M. and Karypis, G.: Frequent Subgraph Discovery, In Proceedings of
the 2001 International Conference on Data Mining (ICDM’01), San Jose, CA, pp.
313-320, 2001.

8. Nijssen, S. and Kok, J.: A Quickstart in Frequent Structure Mining can Make a
Difference, In Proceedings of the 2004 ACM SIGKDD International Conference on
Kowledge Discovery in Databases (KDD’04), Seattle, WA, pp. 647-352, 2004.

9. Srinivasan, A., King, R.D., Muggleton, S.H., Sternberg, M.: The Predictive Toxico-
logic Evaluation Challenge, In Proceedings of the 15th International Conference on
Artificial Intelligence (IJCAI’97), Morgan-Kaufmann, pp. 1-6, 1997.

10. Wörlein, M., Meinl, T., Fischer, I. and Philippsen, M.: A Quantitative Comparison
of the Subgraph Miners MoFa, gSpan, FFSM, and Gaston, In Proceedings of the
9th European Conference on Principles and Practice of Knowledge Discovery in
Databases (PKDD’05), Porto, Portugal, pp. 392-403, 2005.

11. Yan, X. and Han, J.: gSpan: Graph-Based Substructure Pattern Mining. In Pro-
ceedings of the 2002 International Conference on Data Mining (ICDM’02), Mae-
bashi, Japan, pp. 721-724, 2002.

12. Yan, X. and Han, J.: gSpan: Graph-Based Substructure Pattern Mining, Expanded
Version, UIUC Technical Report, UIUCDCS-R-2002-2296, 2002.

