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Abstract. In this paper we present a new algorithm for document clus-
tering called Condensed Star (ACONS). This algorithm is a natural evo-
lution of the Star algorithm proposed by Aslam et al., and improved by
them and other researchers. In this method, we introduced a new con-
cept of star allowing a different star-shaped form; in this way we retain
the strengths of previous algorithms as well as address previous short-
comings. The evaluation experiments on standard document collections
show that the proposed algorithm outperforms previously defined me-
thods and obtains a smaller number of clusters. Since the ACONS algo-
rithm is relatively simple to implement and is also efficient, we advocate
its use for tasks that require clustering, such as information organization,
browsing, topic tracking, and new topic detection.
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1 Introduction

Clustering is the process of grouping a set of data objects into a set of meaningful
subclasses, called clusters; these clusters could be disjoint or not. A cluster is a
collection of data objects that have high similarity in comparison to one another,
but are very dissimilar to objects in other clusters.

Initially, document clustering was evaluated for improving the results in in-
formation retrieval systems [9]. Clustering has been proposed as an efficient way
of finding automatically related topics or new ones; in filtering tasks [2] and
grouping the retrieved documents into a list of meaningful categories, facilitat-
ing query processing by searching only clusters closest to the query [10].

Several algorithms have been proposed for document clustering. One of these
algorithms is Star, presented and evaluated by Aslam et al. [1]. They show that
the Star algorithm outperforms other methods such as Single Link and Av-
erage Link in different tasks; however, this algorithm depends on data order
and produces illogical clusters. Another method that improves the Star algo-
rithm is the Extended Star method proposed by Gil et al. [6]. The Extended
Star method outperforms the original Star algorithm, reducing considerably the
number of clusters; nevertheless this algorithm can leave uncovered objects and
in some cases produce unnecessary clusters. Another version of the Extended



Star method was proposed by Gil et al. to construct a parallel algorithm [7].
However, this version also has some drawbacks.

In this paper we propose a new clustering method, called Condensed Star or
ACONS. In ACONS, we introduced a new definition of star allowing a different
star-shaped sub-graph, in this way we retain the strengths of previous algorithms
as well as solve the above-mentioned drawbacks. The experimentation – compar-
ing our proposal against the original Star and the Extended algorithms – shows
that our method outperforms those algorithms.

The basic outline of this paper is as follows. Section 2 is dedicated to related
work. Section 3 contains the description of the ACONS method. The experimen-
tal results are discussed in section 4. The conclusions of the research and some
ideas about future directions are exposed in section 5.

2 Related work

In this section we analyze the Star algorithm and two proposed versions of the
Extended Star method for document clustering, and we show their drawbacks.

The Star algorithm was proposed by Aslam et al. in 1998 [1], with several
extensions and applications in filtering and information organization tasks [2, 3].
They formalized the problem representing the document collection by its simi-
larity graph, finding overlaps with dense sub-graphs; it is done so because the
clique cover of the similarity graph is an NP -complete problem, and it does not
admit polynomial time approximation algorithms. With this cover approxima-
tion by dense sub-graphs, in spite of loosing intra-cluster similarity guarantees,
we can gain in computational efficiency.

Let V = {d1, ..., dN} be a collection of documents and Sim(di, dj) a similarity
(symmetric) function between documents di and dj , we call similarity graph to
an undirected and weighted graph G = 〈V, E,w〉, where vertices correspond to
documents and each weighted edge corresponds to the similarity between two
documents. Considering a similarity threshold σ defined by the user we can define
a thresholded graph Gσ as the undirected graph obtained from G by eliminating
all the edges whose weights are lower than σ. The Star algorithm approximate
a clique cover of Gσ using denser star-shaped sub-graphs [1].

This algorithm has some drawbacks: (i) dependency on the data order pro-
cessing, and (ii) production of “illogical” clusters, since two star centers are never
adjacent. These drawbacks were properly explained in [6]. The Extended Star
algorithm was proposed by Gil et al. to solve the aforementioned drawbacks
[6]. They represent also the document collection by its thresholded similarity
graph, defining a new notion of star center, obtaining as a consequence, different
star-shaped clusters that are independent of data order.

Unlike the Star algorithm, the obtained clusters are independent of data
order. Nevertheless, the Extended Star algorithm has also some drawbacks. First
of all, it can leave uncovered vertices, producing an infinite loop. This situation
is illustrated in Fig. 1 (A).



Fig. 1. Drawbacks of Extended algorithm

This situation is not an isolated case. We can generalize that any time that
there is a vertex v – such as the illustrated in graph (B) of Fig. 1 – that satisfies
the condition described in (1), then the algorithm produces an infinite loop,
leaving the vertex v uncovered.

∀si, 1 ≤ i ≤ k, |v.Adj| > |si.Adj| ∧ ∀ci, 1 ≤ i ≤ k, |ci.Adj| > |v.Adj| . (1)

In this graph, each si represents the corresponding neighbours (adjacent ver-
tices) of v, and ci, is the adjacent center of si with highest degree. In (1) and
in the following expressions, x.Adj represents the set of adjacent vertices of the
vertex x.

The second drawback of this algorithm is that it can produce unnecessary
clusters, since more than one center can be selected at the same time. As can
be noticed in graph (C) of Fig. 1, vertex 2 and vertex 3 should not be centers at
the same time because we only need one of them to cover vertex 4.

A different version of the Extended Star algorithm was proposed by Gil et
al. to construct a parallel approach [7]. This new version is also independent of
data order, and solves the first drawback of the former Extended Star algorithm,
but it can produce unnecessary clusters and illogical (less dense) clusters.

3 ACONS Algorithm

In this section we introduce a new concept of star allowing a different star-shaped
form and as a consequence a new method, called ACONS, is obtained. As with
the aforementioned algorithms, we represent the document collections by its
thresholded similarity graph Gσ.

3.1 Some basic concepts

In order to define this new star concept and to describe the method, we define
a finite sequence of directed graphs called transition graphs. Each new transi-
tion graph removes the unnecessary edges to get better clusters. Thus, the last
transition will hold the vertices with real possibilities to be centers.

We call the first transition of Gσ = 〈V, Eσ〉 to the directed-graph G
(0)
σ =

〈V, E
(0)
σ 〉 resulting from adding the directed-edge (v, u) to E

(0)
σ iff the edge

(v, u) ∈ Eσ.
Let n ≥ 0 be an integer number, we call the next transition of G

(n)
σ =

〈V, E
(n)
σ 〉, to the directed-graph G

(n+1)
σ = 〈V, E

(n+1)
σ 〉, resulting from adding the



directed-edge (v, u) to E
(n+1)
σ iff (v, u) ∈ E

(n)
σ and v.out[n] ≥ u.out[n], where

v.out[n] denote the out-degree of v in G
(n)
σ , i.e the number of edges (v, x) ∈ E

(n)
σ .

It is important to notice that as G
(n)
σ is not affected in the construction of G

(n+1)
σ ,

we can conclude that this process does not depend on data order.
Thus, starting from Gσ, we can construct a sequence of graph transitions

{G(0)
σ , G

(1)
σ , . . . , G

(n)
σ , . . .}. Furthermore, the integer positive sequence {en}∞n=0,

where en = |E(n)
σ |, is decreasing and there is a unique integer h ≥ 0 such that the

finite sequence of terms {en}h
n=0 is strictly decreasing and the sequence {en}∞n=h

is constant. Then we say that G
(h)
σ is the last transition of Gσ. Given u, v ∈ V ,

we say that u is an r-satellite of v, if 0 ≤ r ≤ h and (v, u) ∈ E
(r)
σ . We denote

v.Sats[r] = {u ∈ V | u is an r-satellite of v} as the set of all r-satellites of v.
A condensed star-shaped sub-graph of m+1 vertices in Gσ, consists of a single

center c and m adjacent vertices, such that c.out[h] > 0. Each isolated vertex in
Gσ will be considered as a degenerated condensed star-shaped sub-graph with
only one vertex.

Starting from this definition and guaranteing a full cover C of Gσ, this
method should satisfy the following post-conditions:

∀x ∈ V , x ∈ C ∨ x.Adj ∩ C 6= ∅ , (2)
∀c ∈ C,∀u ∈ c.Sats[h] , c.out[h] ≥ u.out[h] . (3)

The first condition (2) guarantees that each object of the collection belongs at
least to one group, as a center or as a satellite. On the other hand, the condition
(3) indicates that all the centers satisfy the condensed star-shaped sub-graph
definition.

3.2 ACONS Algorithm

In order to define the ACONS algorithm, we introduce the concepts of voting-
degree of a vertex and the redundancy of a center.

Let G
(h)
σ be the last transition of Gσ and v ∈ V a non-isolated vertex.

The voting-degree (v.vd) of a vertex v is v.vd = |{u | v ∈ u.Electees}|, where
u.Electees = arg maxx{x.out[h] | x ∈ u.Adj ∪ {u}}.

Let C be a set of centers obtained by the algorithm, a center vertex c will be
considered redundant if it satisfies the following conditions:

1. ∃d ∈ c.Adj ∩ C, d.out[h] > c.out[h], i.e. vertex c has at least one adjacent
center (with greater out-degree) on its neighborhood.

2. ∀s ∈ c.Sats[h], s ∈ C ∨ |s.Adj ∩ C| > 1, i.e. vertex s has more than one
adjacent center (a neighboring center different to c) on its neighborhood or
vertex s is a center.

The logic of the ACONS algorithm is to generate a cover of Gσ by the densest
condensed star-shaped sub-graphs. The centers are selected from a candidates
list, formed by the vertices with positive voting-degree in the last transition of
Gσ. The algorithm is summarized in Fig 2.



Algorithm 1: ACONS
Input: V = {d1, d2, . . . , dN}, σ-similarity threshold
Output: SC-Set of clusters

// Phase 11

G
(0)
σ := FindFirstTransition(V, σ);2

G
(h)
σ := FindLastTransition(G

(0)
σ );3

forall vertex v ∈ V do v.Electees := arg maxx{x.out[h] | x ∈ v.Adj ∪ {v}};4

forall vertex v ∈ V do v.vd := |{u | v ∈ u.Electees}|;5

L := {v ∈ V | v.vd > 0};6

// Phase 27

C := {v ∈ V | v.Adj 6= ∅} ;8

U := ∅;9

while L 6= ∅ do10

v := arg maxx{x.vd | x ∈ L} ; // Only one vertex is selected11

if v.Adj ∩ C 6= ∅ then C := C ∪ {v}12

else13

F = {u ∈ v.Sats[h] | u.Adj ∩ C 6= ∅};14

if F 6= ∅ then15

if ∃f ∈ F , v.out[h] > f.out[h] then C := C ∪ {v}16

else U := U ∪ {v};17

end18

end19

L := L \ {v};20

end21

// Phase 322

forall vertex v ∈ U do23

if ∃u ∈ v.Sats[h], u.Adj ∩ C 6= ∅ then C := C ∪ {v};24

end25

// Phase 426

“Sort C in ascending order by out-degree”;27

SC := ∅;28

forall center c ∈ C do29

if c is redundant then C := C \ {c}30

else SC := SC ∪ {{c} ∪ c.Adj};31

end32

Fig. 2. Pseudo-code of ACONS Algorithm

The functions FindFirstTransition and FindLastTransition are applied to
construct the first and the last transition of Gσ based on the concepts and defi-
nitions mentioned in section 3.1. Both functions are very easy to be implemented,
because it is not necessary to preserve all transition states.

The algorithm is made up of five phases: (1) computes the last transition
of Gσ, and calculates the candidates list L using voting-degrees, (2) determines
centers list C and uncertain centers lists U from L, (3) processes U to find new



centers, and (4) removes from C the redundant centers and constructs the set
of clusters.

The phase (1) is very important, because it guarantees the selection of vertices
that actually have real possibilities to be selected as center, i.e. vertices that
could form a dense condensed star-shaped sub-graph. Notice that the starting
candidates list L after phase (1) is made up of the vertices v ∈ V with v.vd > 0.
Thus, the vertices outside L are isolated or satellites with at least one adjacent
vertex in L.

The isolated vertices are selected as centers at the beginning of the phase
(2). Afterward, the vertices of L are processed in a decreasing order regarding
the voting-degree; in this way, we ensure that any selected center will satisfy the
post-condition (3). In each iteration, the vertex v is processed considering the
following situations:

1. If v has not been covered yet by an adjacent vertex c ∈ C then we add v to
C; thus we try to reduce the overlapping among sub-graphs and ensure that
v is covered at least by itself.

2. If v has some adjacent vertex f that has not been covered yet and satisfy:
(a) If f has a lesser out-degree than v then we add v to C; thus we ensure

that such vertex f will belong to a sub-graph denser than the one it can
form.

(b) Otherwise, v is added to uncertain list U postponing the selection of v
as center.

At the end of each iteration, we remove the vertex v from L to guarantee the
phase (2) ending.

During phase (3) all of the vertices v ∈ U are processed in the insertion order,
selecting v as center if it is needed to cover some adjacent vertex. Thus, each
vertex s outside C has at least one adjacent vertex in C, i.e. the post-condition
(2) is fulfilled. Finally (phase(4)), we check the redundancy of each vertex to
eliminate the redundant centers in C .

3.3 General considerations of ACONS Algorithm

The ACONS method – as the original Star algorithm and the two versions of the
Extended algorithm – generates clusters which can be overlapped and guarantees
also that the pairwise similarity between satellites vertices in a condensed star-
shaped sub-graph be high.

As we can see in Fig. 3, unlike its previous algorithms, the ACONS algorithm
can not produce illogical clusters because all the centers satisfy the condensed
star-shaped sub-graph definition. The ACONS algorithm does not produce un-
covered vertices – this property is ensured by the fulfillment of postcondition (2)
– and avoid the generation of unnecessary clusters presented in graph (A) and
(C) of Fig. 1 respectively.

The dependence on data order is a property that the Extended Star method
certainly solves. Nevertheless, as we had previously indicated, it is necessary



Fig. 3. Solutions to uncovered vertices (A), unnecessary clusters (B) and illogical clus-
ters (C)

only when that dependence affects the quality of the resulting clusters. Thus,
the ACONS algorithm solves the dependence on data order (for non symmetric
or similar solutions) observed in the Star algorithm.

4 Experimental results

In this section we present the experimental evaluation of our method, comparing
its results against the Extended Star method and the original Star algorithms.
The produced clustering results are evaluated by the same method and criterion
to ensure a fair comparison across all algorithms.

Two data sets widely used in document clustering research were used in
the experiments: TREC-5 and Reuters-21578. These are heterogeneous regard-
ing document size, cluster size, number of classes, and document distribution.
The data set TREC-5 contains news in Spanish published by AFP during 1994
(http://trec.nist.gov); Reuters-21578 was obtained from http://kdd.ics.uci.edu.
We excluded from data sets the empty documents and also those documents do
not have an associated topic.

In our experiments, the documents are represented using the traditional vec-
tor space model. The index terms of documents represent the lemmas of the
words appearing in the texts. Stops words, such as articles, prepositions and
adverbs are removed from document vectors. Terms are statistically weighted
using the term frequency. We use the traditional cosine measure to compare the
documents.

The literature abounds in measures defined by multiple authors to compare
two partitions on the same set. The most widely used are: Jaccard index, and
F-measure.

Jaccard index.- This index (noted j) takes into account the objects simul-
taneously joined [8]. It is defined as follows:

j(A,B) =
n11

N(N−1)
2 − n00

. (4)

In this index, n11 denotes the number of pairs of objects which are both in
the same cluster in A and are also both in the same cluster in B. Similarly, n00

is the number of pairs of objects which are in different clusters in A and are also
in different clusters in B.

The performances of the algorithms in the document collections considering
Jaccard index are shown in Fig. 4 (A) and (B).



F-measure.- The aforementioned index and others are usually applied to
partitions. In order to make a better evaluation of overlapping clustering, we have
considered F-measure calculated over pairs of points, as defined in [4]. Noted as
Fmeasure, this measure is the harmonic mean of Precision and Recall:

Fmeasure =
2 ∗ Presicion ∗Recall

Presicion + Recall
, (5)

where:

Presicion =
n11

Number of identified pairs
, Recall =

n11

Number of true pairs
.

The performances of the algorithms in the document collections considering
F-measure are shown in Fig. 4 (C) and (D).

Fig. 4. Behavior in AFP (A,C) and Reuters (B,D) collections with Jaccard index and
F-measure

As can be noticed, the accuracy obtained using our proposed algorithm is in
most cases (for all the indexes) comparable with that obtained from the other
methods investigated; moreover, our proposal can outperform those methods for
all the indexes. But, this behavior is not homogeneous for all similarity thresh-
olds; for each collection, there is a minimum value for which ACONS outper-
forms previous Star methods. Starting from this minimum value, the accuracy of
ACONS is in general as good as, or even in many cases higher than, the others.

Furthermore, ACONS in all cases obtains lesser clusters than the other al-
gorithms (see Fig. 5), and in most cases obtains denser clusters. This behavior
could be of great importance for obtaining a minimum quantity of clusters with-
out loosing precision.

It is important to notice that the Extended algorithm could cover all the
vertices, but only in these experiments. Nevertheless, as it was explained, theo-
retically the Extended algorithm may fail with other repositories.



Fig. 5. Number of generated clusters in AFP (A) and Reuters (B) collections

Despite the experiments carried out by Aslam et al. in [1], and in order to
ensure the effectiveness of our proposed algorithm, we made a new experimenta-
tion to compare the performance of ACONS algorithm against the Single Link
and Average Link [5] algorithms, which uses different cost functions. For a fair
comparison across all algorithms, we used the same thresholds of the previous
experiments, stopping the execution of the Single Link and Average Link al-
gorithms when the two selected clusters to be joined do not satisfy the current
threshold, meaning that the evaluation of the cost function for all pair of clusters
in the current algorithm return a value greater than the selected threshold. After
that, we evaluated each algorithm considering the Jaccard index and F-measure,
and we selected the average value of each algorithm for the selected measures
for all thresholds.

The performances of the algorithms in the document collections considering
Jaccard index, and F-measure are shown in Fig. 6.

Fig. 6. Behavior in AFP (A,C) and Reuters (B,D) collections with Jaccard index and
F-measure

As we can see, our proposal also outperforms the Single Link and Aver-
age Link algorithms in both collections. Thus, the ACONS algorithm repre-
sents a 68.2% improvement in performance compared to average link and a
42.3% improvement compared to single link in AFP collection considering the
Jaccard index; if we consider F-measure, then the ACONS algorithm represents
a 57.6% improvement in performance compared to average link and a 33.3 im-
provement compared to single link in the same collection. In the case of the
Reuters collection the improvements are higher and even in some cases it dou-
bles the result.



5 Conclusions

In this paper we presented a new clustering algorithm called Condensed Star
(ACONS). As a consequence, we obtained different star-shaped clusters. This al-
gorithm solves the drawbacks observed in Star and Extended Star methods: the
dependence on data order (for non symmetric or similar solutions), the produc-
tion of uncovered vertices and the generation of illogical and redundant clusters.

We compared the ACONS algorithm with the original Star and the Extended
Star methods. The experimentation shows that our proposal outperforms pre-
vious methods for all the measures and aspects. These performances prove the
validity of our algorithm for clustering tasks.

This algorithm can be used for organizing information systems, browsing,
topic tracking and new topic detection. Although we employ our algorithm to
cluster documents collections, its use is not restricted to this area, since it can
be applied to any problem of pattern recognition where clustering is needed.

As a future work, we want to do some other experiments considering other
representations of the documents and other similarity measures. These experi-
ments could help us to decide a priori how to choose the threshold value in order
to obtain the best performance of our algorithm.
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