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Abstract. Although lot of research have been dedicated to the topic of Content-Base Image 

Retrieval (CBIR), existent approaches still have ill-defined issues and the well-known “semantic 

gap” between low-level computational representation of images and high-level semantics required 

by humans, remains unbridged. In this work we make a state-of-the-art of several major areas that 

are involved in the CBIR process. These are the visual low-level features for describing images, 

spatial relationship representations of regions in images, current approaches to endow images with 

high-level semantics, such as automatic image annotation and retrieval methods which also intend to 

make semantic retrievals from image databases. Some current CBIR systems are also described. 

Keywords: content-based image retrieval, CBIR, automatic image annotation, relevance feedback, 

topological relationships, irregular pyramids, combinatorial maps. 

Resumen. Aunque se han llevado a cabo muchas investigaciones sobre el tema de Recuperación de 

Imágenes por Contenido, los enfoques existentes aún tienen problemas sin resolver y la “brecha 

semántica” entre la representación computacional de bajo nivel de las imágenes y la semántica de 

alto nivel que requieren los humanos, aún se mantiene entre los principales puntos a solucionar. En 

este trabajo se realiza un estado del arte de las principales áreas que se involucran en el proceso de 

la recuperación de imágenes por contenido. Entre estas se encuentran el proceso de descripción de la 

imagen mediante rasgos de bajo nivel y la representación de relaciones espaciales entre las regiones 

de las imágenes. También son abordados los enfoques actuales para dotar las imágenes con 

semántica de nivel superior, tales como la anotación automática de imágenes y métodos de 

recuperación que plantean realizar recuperaciones semánticas en bases de datos de imágenes.  

Palabras clave: recuperación de imágenes por contenido, CBIR, anotación automática de imágenes, 

retroalimentación por relevancia, relaciones topológicas, pirámides irregulares, mapas 

combinatorios. 

1 Introduction 

Due to the advances in digital photography, storage capacity and networks speed, storing large amounts 

of high quality images has been made possible. Digital images are used in a wide range of applications 

such as medical, virtual museums, military and security purposes, and personal photo albums. However, 

users have difficulties in organizing and searching large numbers of images in databases, as the current 
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commercial database systems are designed for text data and not well suited for digital images. 

Therefore, an efficient way for image retrieval is desired. The current most desirable image retrieval 

feature is retrieving images based on their semantic content. 

Content-based image retrieval is an important aspect for any world, society or organization relying 

on digital images as an important source of information because the ability to produce pictorial 

information exceeds the ability to retrieve this information by far. 

Object class recognition, automatic image annotation, and object retrieval are strongly related tasks. 

In object class recognition, the aim is to identify whether a certain object is contained in an image; in 

automatic image annotation, the aim is to create a textual description of a given image; and in object 

retrieval, images containing certain objects or object classes have to be retrieved out of a large set of 

images. Each of these techniques is important to allow for semantic retrieval from image collections.  

A common limitation of the existing retrieval systems is not considering the spatial relation of image 

objects (or components) which may reveal important properties of the scene being analyzed. Some 

studies from the visual cognition community concluded that structural relations between image 

components play a central role in the human similarity comparison process. An earlier finding by Lowe 

states that the similarity between two groups of objects does not equal the sum of similarities between 

the individual objects. [1] 

We believe that spatial location of objects or regions as well as inter relationships between regions 

within an image provide vital clues for searching image databases. 

Objects that are mapped into the image plane induce spatial relations among each other and between 

their parts. Geometrical measurements derived from a digital image are very sensitive to errors due to 

noise, discrete sampling and motion inaccuracies. However these structural and topological relations are 

inherent to the objects and their arrangement in the image and mostly do not depend on the particular 

imaging situation. This is the background of several recent contributions describing spatial/structural 

representations and transformations preserving existing topological relations in the image plane.  

Image characterization should emulate human perception as possible. Therefore, our perception 

works in a multi-resolution fashion. For some visual tasks, human eyes may select coarse filters to 

obtain coarse image features; for others, they select finer features. An image search engine thus must 

have the flexibility to model subjective perceptions and to fulfill a variety of search tasks. [2] This is the 

principle of many hierarchical approaches which represent image features in successively reduced 

resolution levels. 

This is also the base of the irregular dual pyramid framework proposed by Kropatsch, which not 

only captures important topological relationships between regions, but it is also capable of generating 

several levels of resolution preserving these relationships. We believe that this framework can be very 

useful for adding rich semantics to images. 

The retrieval principle of CBIR systems is based on visual features such as color, texture, and shape 

or the semantic meaning of the images, which can be added using image annotations. Nevertheless, in 

most cases, the user needs are not fulfilled. This problem stems from the fact that visual similarity 

measures, such as color histograms, in general do not necessarily match semantics of images human 

subjectivity. To make the problem even worse, people often have different semantic interpretations of 

the same image. Even the same person may have different perception about the same image at different 

times. 

In this work, we perform an overview about the current approaches involved in Content-Base Image 

Retrieval, with both their advantages and problems. 

The rest of the report is organized as follows. In Section 2 we briefly review various low-level image 

features used in high-level semantic-based CBIR systems. Image similarity measure is also discussed in 

Section 2. In Section 3, we present some methods to characterize topological relationships between 

regions and Section 4 provides an overview of some developed approaches which intend to encode 

topological relations among objects or regions. In Section 5 we described some methods regarding 

automatic image annotation for adding semantics to images and Section 6 describes proposed methods 
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for semantically retrieving images from databases. In Section 7, a description of some current CBIR 

systems and application’s areas is provided. Section 8 shows a discussion about the open problems in 

CBIR. Sections 9, 10 and 11 are devoted to the development of this activity in the world, showing 

important databases, scientific conferences, institutions and investigation groups that are related to this 

topic. Finally, Section 12 concludes the report. 

2 Visual Features of Images 

The first step in a CBIR system is defining how images will be represented regarding their visual 

content, since a request in CBIR is not posed to the image itself but to a representation of features of the 

image. Features are often represented by a feature vector. Quantifiable attributes such as histograms of 

color, grey scale or texture features are entries of the feature vector [3]. 

For any object in an image, there are many features which are interesting points on the object that 

can be extracted to provide a feature description of the object. This description can then be used to 

identify the object when attempting to locate the object in another image containing many objects. 

Most object recognition systems tend to use either global image features, which describe an image as 

a whole, or local features, which represent image patches. Global features have the ability to generalize 

an entire object with a single vector. Consequently, their use in standard classification techniques is 

straightforward. Local features, on the other hand, are computed at multiple points in the image and are 

consequently more robust to occlusion and clutter. However, they may require specialized classification 

algorithms to handle cases in which there are a variable number of feature vectors per image [4].  

Basically, there are two kinds of features that can be extracted from an image: visual features and 

spatial relationship features. Visual features, such as texture, shape, and color, could potentially be used 

as a basis for coarse-grained image similarity retrieval (e.g. “find images which are predominantly 

green”). If these visual features are extracted for individual objects within images, the queries could be 

more detailed (e.g. “find images with a yellow box”).When the spatial relationships are introduced, the 

queries can be even more precise (e.g. “find a yellow box over a white table”) [5]. 

In a CBIR system, it is very challenging to find a set of features that can model the user’s perception 

of images in the database. 

Measuring meaningful image similarity is a problem that rests on two elements: finding a set of 

features which adequately encodes the characteristics that we intend to measure and finding a suitable 

metric for the feature space. Since the same feature space can be endowed with infinity of metrics, the 

two problems are by no means equivalent nor does the first subsume the second [6]. 

Features Descriptors 

When an image is segmented in several regions representing potential objects, the remaining question is 

which is the most appropriate descriptor to characterize the regions? There are a large number of 

possible descriptors and associated distance measures which emphasize different image properties like 

pixel intensities, color, texture, edges etc. [7] 

In [7], an evaluation of the descriptors is performed in the context of matching and recognition of the 

same scene or object observed under different viewing conditions. 

The earliest work on appearance-based object recognition has mainly utilized global descriptions 

such as color or texture histograms. The main drawback of such methods is their sensitivity to real-

world sources of variability such as viewpoint and lighting changes, clutter and occlusions. For this 

reason, global methods were gradually supplanted over the last decade by part-based methods, which 

became one of the dominant paradigms in the object recognition community. Part-based object models 

combine appearance descriptors of local features with a representation of their spatial relations. 
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Initially, part-based methods relied on simple Harris interest points, which only provided translation 

invariance. Subsequently, local features with higher degrees of invariance were used to obtain 

robustness against scaling changes and affine deformations. While part-based models offer an 

intellectually satisfying way of representing many real-world objects, learning and inference problems 

for spatial relations remain extremely complex and computationally intensive, especially in a weakly 

supervised setting where the location of the object in a training image has not been marked by hand [8].  

Recent work has shown that local features invariant to common image transformations (e.g., SIFT) 

are a powerful representation for recognition, because the features can be reliably detected and matched 

across instances of the same object or scene under different viewpoints, poses, or lighting conditions. 

Most researchers, however, have done recognition with local feature representations using nearest-

neighbor or voting-based classifiers followed by an alignment step; both may be impractical for large 

training sets, since their classification times increase with the number of training examples. 

Many different descriptors have been presented in the literature (see [7] for an overview). In [8] they 

use three different descriptors: SIFT, SPIN and RIFT. The SIFT descriptor has been shown to 

outperform a set of existing descriptors [7], while SPIN and RIFT, have achieved good performance in 

the context of texture classification.  

2.1.1 Color Feature Descriptors 

Color is one of the most important image indexing features employed in CBIR. Color is probably the 

most important feature that users can specify when they create image queries. In addition, proper color 

measures can be reliable even in the presence of changes in illumination, view angle, and scale [9]. 

Color features include the conventional color histogram (CCH), the fuzzy color histogram (FCH), 

the color correlogram (CC) and a more recent color-shape-based feature. The extraction of the color-

based   features follows a similar progression in each of the four methods [10]: 

 Selection of the color space,  

 quantization of the color space,  

 extraction of the color feature,  

 derivation of an appropriate distance function. 

Conventional Color Histogram. The conventional color histogram of an image indicates the frequency of 

occurrence of every color in an image. From a probabilistic perspective, it refers to the probability mass 

function of the image intensities. It captures the joint probabilities of the intensities of the color 

channels (R, G and B in the RGB color-space, or H, S and V in the HSV color-space, and similarly for 

other color spaces) [10]. 

Computationally, the color histogram is constructed by counting the number of pixels of each color 

(in the quantized color space). The appealing aspect of the color histogram is its simplicity and ease of 

computation. There are however, several drawbacks associated with it. The first is the high 

dimensionality of the color histogram, even after the quantization of the color space. Another downside 

of the color histogram is that it does not take into consideration color similarity across different bins. 

Also, the color histogram is a global image feature that does not encode any color-spatial information.  
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Fuzzy Color Histogram. In the fuzzy color histogram approach, a pixel color belongs to all histogram bins with 

different degrees of memberships to each bin. The primary advantage of this histogram is that it encodes the 

degree of similarity of each pixel color to all other histogram bins through a fuzzy-set membership function. 

Taking into account color pixel similarity makes the fuzzy color histogram more robust to quantization errors as 

well as to changes in light intensity. However, it still embeds several drawbacks. Like the conventional color 

histogram, the fuzzy color histogram delineates only the global color properties of the image, and its features 

dimensionality is as high as that of the color histogram. In addition, the fuzzy color histogram approach introduces 

the additional challenge of computing the appropriate fuzzy membership function [11]. 

Color correlogram. The color correlogram expresses how the spatial correlation of pairs of colors changes with 

distance. A color correlogram for an image is defined as a table indexed by color pairs, where the dth entry for 

row (i,j) specifies the probability of finding a pixel of color j at a distance d from a pixel of color i in the image. In 

general, since local correlations between different colors are more significant than global correlations in an image, 

a small value of d is sufficient to capture special correlations. Important characteristics of the color correlogram 

method are that it encodes local as well as global spatial information, and it has been shown to work well for 

coarse color images. The major drawback of this method is the high dimensionality of the feature space [12]. 

The Color-Shape Based Method. The color-shape based method (CSBM) [13] is based on color, area and 

perimeter-intercepted lengths of segmented objects in an image. The algorithm starts by clustering image pixels 

into K clusters according to the K-means algorithm. The mean value of each cluster is regarded as a representative 

color for the cluster. A quantized color image I’ is obtained from the original image I by quantizing pixel colors in 

the original image into K colors. A connected region having pixels of identical color is regarded as an object. The 

area of each object is encoded as the number of pixels in the object. Further, the shape of an object is 

characterized by “perimeter-intercepted lengths” (PILs), obtained by intercepting the object perimeter with eight 

line segments having eight different orientations and passing through the object center. The PILs have been shown 

to be a good characterization of object shapes. The main advantage of this method is that it encodes object shapes 

as well as colors. The drawback on the other hand, is more involved computation, and the need to determine 

appropriate color thresholds for the quantization of the colors. Another drawback of CSBM is its impressionability 

to contrast and noise variation.  

 

Though all these methods provide good characterization of color, they have the problem of high-

dimensionality. This leads to more computational time, inefficient indexing, and low performance. The 

global color-based methods suffer from problems of non-invariance and large storage requirements. 

Hence other features like shape, texture, and spatial location are added to the feature space to enhance 

the retrieval efficiency and effectiveness [14]. 

2.1.2 Texture Feature Descriptors 

Texture generally refers to the presence of a spatial pattern that has some properties of homogeneity 

[10]. Texture manifests itself as variations of the image intensity within a given region. Directional 

features are extracted to capture image texture information. Texture feature extraction methods include 

the steerable pyramid, the contourlet transform, the Gabor wavelet transform and the complex 

directional filter bank (CDFB). 

Texture features usually contain important information about the structural arrangement of surfaces 

and their relationship to the surrounding environment [15]. Typical texture measures used in image 

retrieval systems are coarseness, contrast and directionality. Coarseness measures the scale of the 

texture (pebbles versus boulders), contrast describes its vividness, and directionality describes whether 

it has a favored direction (like grass) or not (like a smooth object). A good texture discrimination is not 

needed in image retrieval, but more important is the perceptual similarity of textures [9]. 

Co-occurrence matrices. Co-occurrence matrices are based on second-order statistics of pairs of intensity values 

of pixels in an image. A co-occurrence matrix counts how often pairs of grey levels of pixels, separated by a 

certain distance and lying along certain direction, occur in an image. This characterization of texture is not very 
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effective for classification and retrieval. In addition, these features are expensive to compute; hence, co-

occurrence matrices are rarely used in image database applications [15]. Instead of computing the texture features 

in the spatial domain, an attractive alternative is to use transform domain features. The discrete Fourier transform 

(DFT), the discrete cosine transform (DCT), and the discrete wavelet transforms (DWT) have been quite 

extensively used for texture classification [15]. 

The Steerable Pyramid. The steerable pyramid generates a multi-scale, multi-directional representation of the 

image. The basic filters are translations and rotations of a single function. The image is decomposed into one 

decimated low-pass sub-band and a set of undecimated directional sub-bands. The decomposition is iterated in the 

low-pass sub-band. Because the directional sub-bands are undecimated, there are 4K/3 times as many coefficients 

in the representation as the original image, where K is the number of orientations [16]. 

The Contourlet Transform.  The contourlet transform provides a multi-scale, multi-directional decomposition of 

an image. It is a combination of a Laplacian pyramid and a directional filter bank (DFB). Bandpass images from 

the Laplacian pyramid are fed into the DFB so that directional information can be captured. The low frequency 

components are separated from the directional components. After decimation, the decomposition is iterated using 

the same DFB. Its redundancy ratio is less than 4/3 because the directional sub-bands are also decimated [16].  

The Gabor Wavelet Transform. To obtain a Gabor filter bank with K orientations and S scales, the two-

dimensional Gabor function is dilated and rotated appropriately by setting the parameters of the Gabor function 

(thus obtaining K*S Gabor functions). The image is then convolved with each of the obtained Gabor functions. It 

has been shown that the Gabor Transform for texture image retrieval yields the highest texture retrieval results. 

However, it results in an over-complete representation of the original image with a redundant ratio of K*S [16].  

The Complex Directional Filter Bank. The shift-invariant complex directional filter bank (CDFB) consists of a 

Laplacian pyramid and a pair of directional filter banks, designated as primal and dual filter banks. The filters of 

these filer banks are designed to have special phase functions so that the overall filter is the Hilbert transform of 

the primal filter bank. A multi-resolution representation is obtained by reiterating the decomposition at the low-

pass branch. The attractive features of the CDFB are its shift invariance, its comparably high texture retrieval 

performance and its relatively low redundancy ratio. The over-complete ratio of the CDFB is bounded by 8/3, 

whereas those of the Gabor transform and steerable pyramid increase linearly with the number of directional sub-

bands [16].  

Autoregressive and random field texture models. As described in [15], one can think of a textured image as a 

two-dimensional array of random numbers. Then, the pixel intensity at each location is a random variable. One 

can model the image as a function f (r, ω), where r is the position vector representing the pixel location in the 2D 

space and ω is a random parameter. For a given value of r, f (r, ω) is a random variable (because ω is a random 

variable). Once we select a specific texture ω, f (r, ω) is an image, namely, a function over the two-dimensional 

grid indexed by r. f (r, ω) is called a random field. Thus, one can think of a texture-intensity distribution as a 

realization of a random field. Random field models (also referred to as spatial-interaction models) impose 

assumptions on the intensity distribution. 

A special case of the Markov random field (MRF) that has received much attention in the image 

retrieval community is the Simultaneous Autoregressive Model (SAR). In order to define an appropriate 

SAR model, it has to be determined the size of the neighborhood. This is a nontrivial problem, and 

often, a fixed-size neighborhood does not represent all texture variations very well. In order to address 

this issue, the Multiresolution Simultaneous Autoregressive (MRSAR) model has been proposed. The 

MRSAR model tries to account for the variability of texture primitives by defining the SAR model at 

different resolutions of a Gaussian pyramid. Thus, three levels of the Gaussian pyramid, together with a 

second-order symmetric model, require 15(3 × 5) parameters to specify the texture [15]. 
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2.1.3 Shape Feature Descriptors 

Of all the different primitive features, shape is used the least in content-based image retrieval. Shape 

can be characterized fairly easy (shape is the outline of a structure) but it is difficult to represent shape 

in such a way that perceptually similar shapes are close to each other based on some distance metric in 

feature space. Nevertheless, shape has long been recognized as an important feature for describing and 

differentiating objects in pictures [3]. Two major steps are involved in shape feature extraction. They 

are object segmentation and shape representation. Only approximate representations of shape are 

practically usable for image retrieval. [15]. 

Shape has been represented using a variety of descriptors such as moments, Fourier descriptors 

(FD), geometric and algebraic invariants, polygons, polynomials, splines, strings, deformable templates, 

skeletons, and so on. Each of these representations aims at capturing specific perceptually salient 

dimensions of the qualitative aspects of shape. Because of the heterogeneous nature of the aspects 

captured, it is not possible to compare different descriptors outside the context of very specific 

applications [15]. 

Most shape features used by CBIR systems are circularity, eccentricity, major axis orientation and 

algebraic moment. Sometimes differences between objects of the same type are due to changes in 

viewing geometry or they are due to physical deformation. One object, for example, can be a stretched, 

bent, tapered or dented version of the other. To describe these deformations, therefore, it is reasonable 

to model the physics by which real objects deform, and then to use that information to guide the 

matching process. In general, most CBIR systems using shape-based similarity assume that objects are 

simple, for example they are composed of only one homogeneous part [9]. 

Boundary vs. Interior. Two large categories of shape descriptors can be identified: those capturing the boundary 

(or contour appearance) and those characterizing the interior region. Boundary representations emphasize the 

closed curve that surrounds the shape. This curve has been described by numerous models, including chain codes, 

polygons, circular arcs, splines, explicit and implicit polynomials, and boundary Fourier descriptors. Alternately, a 

boundary can be described by its features, for example, curvature extrema and inflection points [15]. 

Interior descriptions of shape, on the other hand, emphasize the “material” within the closed 

boundary. The interior has been modeled in a variety of ways, including collections of primitives 

(rectangles, disks, superquadrics, etc.), deformable templates, by modes of resonance, skeletal models, 

or simply as a set of points (as in mathematical morphology) [15]. 

Global vs. Local.  Shape can also be viewed either from a local or from a global perspective. Many early models 

in indexing by shape content used features such as moments, eccentricity, area, and so on, which are typically 

based on the entire shape and are thus global. Similarly, Fourier descriptors of two-dimensional shape are global 

descriptors. On the other hand, local representations restrict computations to small neighborhoods of the shape. 

For example, a representation based on curvature extrema and inflection points of the boundary is local [15]. 

Purely global representations are affected by variations, such as partial occlusion and articulation, whereas purely 

local representations are sensitive to noise [15]. 

Composition of Parts vs. Deformation. Shape can also be viewed either as the composition of simpler, 

elementary parts, or as the deformation of simpler shapes. In the “part-based view,” shapes are composed of 

simple components (e.g. a hand is seen as four fingers and one thumb attached to a palm). Superquadrics represent 

a rich space of shape primitives from which to choose. 

Shape can also be decomposed into parts based on “local” evidence. Properties of the boundary 

belong to this category. For example, the boundary can be decomposed into codons along negative 

minima of its curvature or by taking into account regional properties, such as good continuation of 

tangents. The latter approach has been shown to produce parts that are perceptually meaningful [15]. 

Topology-preserving shape representation. In [17], an interesting approach has been proposed for extracting 

contours with topological control. The topological approach consists of decomposing an image as a cell complex, 
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handling each cell of the decomposition by topological operators. They employ the triangular cell decomposition 

(simplicial complex), as it allows a better contour definition. An advantage of handling an image as a cell complex 

is that regions of interest in the image can be represented by a set of cell, enabling the contour extraction from the 

boundary edges of the cells. Another advantage is that the topology of the regions can be controlled in a 

straightforward way, as topological operators can be employed to glue the cells that comprise the region. 

The contour extraction starts by modeling an object according to user input parameters that define a 

target threshold range, the number of components and the number of holes. The threshold range 

identifies which triangles of T will belong to the final object O, and the number of components and 

holes defines the topology of the object O. Constructing the mesh using the Morse operators enables the 

system to keep track of the exact number of connected components and holes after each triangle 

insertion [17]. 

Once the object is modeled, its contours can be extracted by walking along the boundary edges, i.e., 

edges which are shared by only one triangle [17]. 

2.1.4 Other Feature Descriptors 

Distribution-based descriptors. These techniques use histograms to represent different characteristics of 

appearance or shape. A simple descriptor is the distribution of the pixel intensities represented by a histogram.  

An approach robust to illumination changes relies on histograms of ordering and reciprocal relations 

between pixel intensities which are more robust than raw pixel intensities. The binary relations between 

intensities of several neighboring pixels are encoded by binary strings and a distribution of all possible 

combinations is represented by histograms. This descriptor is suitable for texture representation but a 

large number of dimensions is required to build a reliable descriptor. 

The scale invariant feature transform (SIFT) combines a scale invariant region detector and a 

descriptor based on the gradient distribution in the detected regions [7]. The SIFT descriptor computes a 

gradient orientation histogram within the support region. For each of 8 orientation planes, the gradient 

image is sampled over a 4×4 grid of locations, thus resulting in a 4×4×8 = 128-dimensional feature 

vector for each region. A Gaussian window function is used to assign a weight to the magnitude of each 

sample point. This makes the descriptor less sensitive to the small changes in the position of the support 

region and puts more emphasis on the gradients that are near the center of the region. [8] 

Gradient location-orientation histogram (GLOH) is proposed in [7] and is an extension of the SIFT 

descriptor, designed to increase its robustness and distinctiveness. They compute the SIFT descriptor 

for a log-polar location grid with 3 bins in radial direction (the radius set to 6, 11 and 15) and 8 in 

angular direction, which results 17 location bins. The central bin is not divided in angular directions. 

The gradient orientations are quantized in 16 bins. This gives a 272 bin histogram. The size of this 

descriptor is reduced with PCA. The covariance matrix for PCA is estimated on 47 000 image patches 

collected from various images. The 128 largest eigenvectors are used for description. 

Geometric histogram and shape context descriptors implement the same idea and are very similar to 

the SIFT descriptor. Both methods compute a 3D histogram of location and orientation for edge points 

where all the edge points have equal contribution in the histogram [7].  

PCA-SIFT descriptor is a vector of image gradients in x  and y  direction computed within the support 

region. The gradient region is sampled at 39x39 locations therefore the vector is of dimension 3042. 

The dimension is reduced to 36 with PCA. These descriptors were successfully used, for example, for 

shape recognition of drawings for which edges are reliable features. [7] 

The SPIN descriptor, based on spin images used for matching range data, is a rotation-invariant two-

dimensional histogram of intensities within an image region. The two dimensions of the histogram are 

d, the distance of the center, and i, the intensity value. The entry at (d,i) is simply the probability of the 

occurrence of pixels with intensity value i at a fixed distance d from the center of the patch. [8] 

The RIFT descriptor is a rotation-invariant version of SIFT. An image region is divided into 

concentric rings of equal width, and a gradient orientation histogram is computed within each ring. To 



 Content-Based Image Retrieval Using Topological Descriptors    9 

 

obtain rotation invariance, gradient orientation is measured at each point relative to the direction 

pointing outward from the center. [8] 

In [8], to obtain robustness to illumination changes, the descriptors were made invariant to affine 

illumination transformations of the form aI(x)+b. For SPIN and RIFT descriptors each support region is 

normalized with the mean and standard deviation of the region intensities. For SIFT descriptors the 

norm of each descriptor is scaled to one. 

In [18], is proposed the SURF descriptor. They construct a square region centered around the interest 

point and split it up regularly into smaller 4 × 4 square sub-regions. For each sub-region, they compute 

a few simple features at 5×5 regularly spaced sample points. The Haar wavelet response in horizontal 

direction dx and the Haar wavelet response in vertical direction dy are summed up over each sub-region 

and form a first set of entries to the feature vector. In order to bring in information about the polarity of 

the intensity changes, they also extract the sum of the absolute values of the responses, |dx| and |dy|. 
Hence, each sub-region has a four-dimensional descriptor vector for its underlying intensity structure, 

which results in a descriptor vector for all 4×4 sub-regions of length 64. The wavelet responses are 

invariant to a bias in illumination (offset). Invariance to contrast (a scale factor) is achieved by turning 

the descriptor into a unit vector. 

Spatial-frequency techniques. Many techniques describe the frequency content of an image. The Fourier 

transform decomposes the image content into the basis functions. However, in this representation the spatial 

relations between points are not explicit and the basis functions are infinite, therefore is difficult to adapt to a local 

approach. The Gabor transform overcomes these problems, but a large number of Gabor filters is required to 

capture small changes in frequency and orientation. Gabor filters and wavelets are frequently explored in the 

context of texture classification [7]. 

Differential Descriptors. A set of image derivatives computed up to a given order approximates a point 

neighborhood. Differential invariants combine components of the local jet to obtain rotation invariance. Steerable 

filters steer derivatives in a particular direction given the components of the local jet. Steering derivatives in the 

direction of the gradient makes them invariant to rotation. Steerable filters and differential invariants use 

derivatives computed by convolution with Gaussian derivatives of σ=6.7 for an image patch of size 41. Changing 

the orientation of derivatives gives equivalent results to computing the local jet on rotated image patches [7]. 

Moment invariants. Generalized moment invariants have been introduced to describe the multi-spectral nature of 

the image data. The moments characterize shape and intensity distribution in a region. They are independent and 

can be easily computed for any order and degree.  However, the moments of high order and degree are sensitive to 

small geometric and photometric distortions. Computing the invariants reduces the number of dimensions. These 

descriptors are therefore more suitable for color images where the invariants can be computed for each color 

channel and between the channels [7]. 

Multiresolution histograms. The multiresolution decomposition of an image is computed with Gaussian 

filtering. The image at each resolution gives a different histogram. The multiresolution histogram, H, is the set of 

intensity histograms of an image at multiple image resolutions. In [19], the multiresolution decomposition of an 

image is implemented with a pyramid for efficiency. The multiresolution histogram can be computed and stored 

efficiently also. Moreover, it can also be matched very fast using the L1 norm. The multiresolution histogram not 

only combines intensity with spatial information, but it also preserves the efficiency, simplicity, and robustness of 

the plain histogram. The feature proposed in [19] uses the histogram of the original image together with the 

differences between histograms of consecutive image resolutions. 

2.1.5 Comparison of some feature descriptors 

In the evaluation performed by [7], the GLOH descriptor obtained the best results in most of the tests, 

closely followed by SIFT; however, GLOH is computationally more expensive. These results can be 

explained by the fact that they capture a substantial amount of information about the spatial intensity 
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patterns, while at the same time being robust to small deformations or localization errors [18]. This 

shows the robustness and the distinctive character of the region-based SIFT descriptor. Shape context 

also shows a high performance. However, for textured scenes or when edges are not reliable its score is 

lower. 

According to [7], the best low dimensional descriptors are gradient moments and steerable filters. 

They can be considered as an alternative when the high dimensionality of the histogram-based 

descriptors is an issue. Differential invariants give significantly worse results than steerable filters, 

which is surprising as they are based on the same basic components (Gaussian derivatives). The 

multiplication of derivatives necessary to obtain rotation invariance increases the instability. 

Cross correlation gives unstable results. The performance depends on the accuracy of interest point 

and region detection, which decreases for significant geometric transformations. Cross correlation is 

more sensitive to these errors than other high dimensional descriptors. [7] 

According to [8], SIFT performs better than SPIN and RIFT, while the performance rank between 

SPIN and RIFT depends on dataset. It is not surprising that RIFT performs worse than SIFT, since it 

averages gradient orientations over a ring-shaped region and therefore loses important spatial 

information. 

Combining SIFT with SPIN and RIFT with SPIN boosts the overall performance because the two 

descriptors capture different kinds of information (gradients vs. intensity values). [8] 

For content based image retrieval good response times are required and this is hard to achieve using 

the huge amount of data obtained by local features. The dimension of the SIFT descriptor is extremely 

high because the size of the key-point descriptor is 128 dimensional vector. In [20], to reduce the 

dimensionality, they use histograms of local features. With this approach the amount of data is reduced 

by estimating the distribution of local features for every image. The creation of these histograms is a 

three step procedure. First, the key-points are extracted from all database images, where a key-point is 

described with a 128 vector of numerical values. The key-points are then clustered in 2000 clusters. 

Afterwards, for each key-point they discard all information except the identifier of the most similar 

cluster center. A histogram of the occurring patch-cluster identifiers is created for each image. This 

results in a 2000 dimensional histogram per image [20]. 

Similarity Measures 

After having selected the right set of features and having characterized an image as a point in a suitable 

vector space, we can make some uncritical and unwarranted assumptions about the metric of the space. 

Typically, the feature space is assumed to be Euclidean. A similarity function is a mapping between 

pairs of feature vectors and a positive real-valued number, which is chosen to be representative of the 

visual similarity between two images [15]. 

A number of similarity measures proposed in the literature explain similarity as a distance in some 

suitable feature space that is assumed to be a metric space [6]. 

Several researchers have designed similarity measures that operate on sets of unordered features. 

One proposition is a kernel that averages over the similarities of the best matching feature found for 

each feature member within the other set [21]. Another similar kernel also considers all possible 

matchings between features but measures overall similarity with a different bias, by raising the 

similarity between each pair of features to a given power. Both approaches have a computational 

complexity that is squared in the number of features. Furthermore, both match each feature in a set 

independently, ignoring potentially useful co-occurrence information. 

2.1.6 Common Similarity Measures 

Feature vector histograms can be compared using various similarity measures. Well-known measures 

are based on the L1 norm distance, L2 norm distance, Standard Euclidean (SE) distance, Cosine (Cos) 
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distance and Correlation (Cor) distance. For two histograms Hi(b) and Hj(b), with bins numbered as 

b=1,2,. . .,L, the similarity measures are defined as follows [22].  

L1 and L2 based measures. 

 

 

  (   )  ∑|  ( )    ( )|  

 

   

 2.1 

 

  (   )  ∑(  ( )    ( ))
   

 

   

 2.2 

L1 norm gives overall best performance. The possible reason is that the nature of L1 norm fits well 

with the intrinsic property of the optimization method in which histograms bins are ordered and their 

length adjusted to provide best performance. The L1 norm also has lower computational complexity and 

good accuracy. [22] 

Standard Euclidean measure. 

 

  (   )  ∑(
  ( )    ( )

 ( )
)

  

   

 2.3 

Where ( )b represents the variance of all histograms at b-th bin. 

Cosine distance. 

 

   (   )  ∑
  ( )  ( )

√‖  ‖‖  ‖

 

   

 2.4 

Where iH  and 
jH are histogram length in the L2 norm. 

Correlation distance. 
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Earth Mover’s Distance (EMD). Given the signature of an image as a set of descriptors 

 *(     )   (     )+, where m is the number of image clusters, pi is the center of the i-th cluster, and ui is 

the relative size of the cluster (the number of descriptors in the cluster divided by the total number of descriptors 

extracted from the image), the Earth Mover’s Distance between two signatures    *(     )   (     )+  and 

   *(     )   (     )+ is defined as follows: 
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Where     is a flow value that can be determined by solving a linear programming problem and 

 (     ) is the ground distance (i.e. Euclidean distance) between cluster centers    and   . 

Intuitively, EMD measures of the amount of work necessary to transform one weighted point set into 

another. EMD is a cross-bin dissimilarity measure and can handle variable-length representation of 

distributions, i.e., m and n do not have to be the same. [8] EMD was first used in vision to measure the 

distance between intensity images. More recently EMD has been used for global color- or texture-based 

similarity, and for comparing vector-quantized signatures of affine invariant features in texture images. 

[23]. The time complexity of EMD is larger than O(N
3
) where N is the number of histogram bins. [24] 

   distance. To compare two histograms    (       ) and    (       ) the    distance is defined as 

[8]: 
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Comments regarding these measures. The most often used bin-to-bin distances between histogram-based 

local descriptors (e.g.    statistics, L2 distance and Kullback-Leibler divergence) assume that the 

histograms are already aligned, so that a bin in one histogram is only compared to the corresponding bin 

in the other histogram. These methods are sensitive to distortions in histogram-based local descriptors 

as well as quantization effects. Cross-bin distances, such as the Earth Mover’s Distance (EMD), allow 

bins at different locations to be (partially) matched and therefore alleviate the quantization effect [24].  

The L1 norm has the lowest computational complexity. However, it could produce false negatives 

(not all similar images are retrieved). The L2 norm (i.e., the Euclidean distance) is probably the most 

widely used metric. However, it can result in false positives (dissimilar images are retrieved) [15]. 

These norms can be applied to measure similarity for many kinds of descriptors, but in the case of 

shape descriptors, the situation is different. Ideally, the representation should map each shape to a 

vector of numbers in such a way that the Euclidean distance between pairs of vectors indicates shape 

dissimilarity. Unfortunately, shape comparison is inherently complex and current representations do not 

allow for such a mapping. Thus, the role of the matching process is to define such a metric [15]. 

Boundary-based and region-based representations inherently lead to different matching procedures. 

Boundary-based techniques are typically accompanied by curve-based comparisons. In these 

approaches two curves are compared based on their properties, such as curvature, resulting in a single 

similarity measure [15]. 

Some approaches include using line primitives to describe the curve and then using the length and 

absolute orientation of the primitives to measure curve similarity, others have proposed an approach to 

measuring curve similarity based on an initial alignment [15]. 

Region-based representations typically involve trees and have relied on such methods as graph-tree 

matching, string edit distance, graduated assignment, tree edit distance, eigenvalue decomposition, 

Bayesian matching, containment tree matching, and so on. Other region-based techniques, such as 
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modal matching and deformable prototypes, allow for a global to local ordering of shape deformations 

[15]. 

2.1.7 Classification Kernels 

Pyramid Matching Kernel. The spatial pyramid matching method proposed in [21] works by placing a sequence 

of increasingly coarser grids over the feature space and taking a weighted sum of the number of matches that 

occur at each level of resolution. At any fixed resolution, two points are said to match if they fall into the same 

cell of the grid; matches found at finer resolutions are weighted more highly than matches found at coarser 

resolutions. 

More specifically, let X and Y be two sets of vectors in a d-dimensional feature space and let us 

construct a sequence of grids at resolutions    , such that the grid at level   has    cells along each 

dimension, for a total of      cells. Let   
 

  and   
  denote the histograms of X and Y at this 

resolution, so that   
 ( ) and   

 ( ) are the numbers of points from X and Y that fall into the i-th cell of 

the grid. Then the number of matches at level   is given by the histogram intersection function: 
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The number of matches found at level   also includes all the matches found at the finer level    . 

So, the number of new matches found at level   is given by           for          . The weight 

associated with a level is inversely proportional to cell width at that level, to penalize matches found in 

larger cells, since they involve increasingly dissimilar features. A pyramid match determines a partial 

correspondence by matching points once they fall into the same histogram bin. 

The similarity between the two sets is measured by the sum of the weighted number of new matches 

found at each level in the pyramid: 
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By construction, the pyramid match offers an approximation of the optimal correspondence-based 

matching between two feature sets, in which the overall similarity between corresponding points is 

maximized. The pyramid match kernel allows precise matching of two collections of features in a high 

dimensional appearance space, but discards all spatial information [25] [21]. 

In [25], the approach of the pyramid matching kernel is used but instead of performing the matching 

in the high dimensional feature space, it does it in the two-dimensional image space, and use traditional 

clustering techniques in feature space. In this approach they quantify all feature vectors into M discrete 

types, and make the assumption that only features of the same type can be matched to one another.  

Each channel m defines two sets of two-dimensional vectors, Xm and Ym, representing the coordinates of 

features of type m found in the respective images. The final kernel is the sum of the separate channel 

kernels: 
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They implement K
L
 as a single histogram intersection of “long” vectors formed by concatenating the 

appropriately weighted histograms of all channels at all resolutions.  
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This approach maintains continuity with the “visual vocabulary” paradigm [25]. 

EMD and χ
2 
Kernels. In [8] they use SVM for classification, with the pair-wise coupling method, which trains a 

classifier for each possible pair of classes. To incorporate EMD or    distance into the SVM framework, they use 

the extended Gaussian Kernels: 

 
 (     )     ( 

 

 
) (     )   2.11 

Where (     )is EMD (or    
distance) if    and   are image signatures (or vocabulary-histograms). 

The resulting kernel is the EMD kernel (or   kernel). A is a scaling parameter that can be determined 

through cross-validation. 

3 Topological Relationships between Regions 

Representing spatial relationships seems to be a very promising approach in CBIR systems, especially 

when we are dealing with multi-object images. It is important to model how these objects are 

distributed and related within the image, since this can be a source of important information in the 

retrieval process. 

So far, there are two kinds of representation for spatial relationship features [5]: 

 Topological relationships, which are invariant under topological transformation of the referenced 

objects, such as translation, rotation and scaling. 

 Orientation relationships, which concern partial and total orientation relationships among objects. 

Basically they describe where objects are placed relative to one another. 

 

Topological relationship has been intensively studied; in particular, it has been applied in GIS due to 

its invariance under transformation [5]. Topological relations between objects are those relations that 

remain invariant under continuous transformations (i.e. translation, rotation, scaling, bending), so this 

kind of spatial information can be very important for developing descriptors invariants to these 

transformations. 

Several models have been proposed to represent topological relationships between regions. The best 

known models are the 4-Interesection Model and 9-Interesection Model. 

4-Intersection Model 

Binary topological relations between two objects, A and B, are defined in terms of the 4 intersections of 

A’s boundary (∂A) and interior (A) with B’s boundary (∂B) and interior (B). This model is concisely 

represented by a 2 X 2 matrix, called the 4-intersections [26]: 

   (   )  *
       
         

+ 3.1 

By considering the values empty (∅) and non-empty (¬∅) for the 4 intersections, one can distinguish 

2
4
=16 binary topological relations. Eight of these sixteen relations can be realized for homogeneously 

2-dimensional objects with connected boundaries, called regions if the objects are embedded in ℝ2. This 
can be seen in Fig. 1: Eight topological relations between two regions A and B. 
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Fig. 1: Eight topological relations between two regions A and B 

This model has the advantage of being simple and is well accepted, but has some disadvantages [26]: 

 Does not distinguish between conceptually different situations (different situations may 

correspond to the same matrix) 

 Considers only region/region relations. 

9-Intersection Model 

The 4-intersection model is extended by considering the location of each interior and boundary with 

respect to the other object’s exterior, therefore , the binary topological relation between two objects,   

and  ,  in ℝ  is based upon the intersection of  ’s interior ( ), boundary (  ) and exterior (  ) with 

 ’s interior ( ), boundary (  ) and exterior (  ). The nine intersections between the six object parts 

describe a topological relation and can be concisely represented by a 3 X 3 matrix [26]: 

 
  (   )  [

           

              

              
] 3.2 

In analogy to the 4-intersection, each intersection will be characterized by a value empty (∅) and 

non-empty (¬∅), which allows one to distinguish 2
9
=512 different configurations. Only a small subset 

of them can be realized between two objects in ℝ . 
This model is potentially more expressive than the 4-intersection model and considers topological 

relations between generic sets of spatial entities (not just region/region relations) and relationships 

between region and embedding space [26]. The 9-intersection model is reduced to the 4-intersection 

model relations in 2 cases: 

 If two objects are simply connected, their boundaries form Jordan Curves and the objects have co-

dimension 0. 

 If two objects are simply connected, each boundary forms a separation and the objects have co-

dimension 0. 

Disadvantages of the 9-intersection model [27]: 

 It fails to distinguish certain disjoint relations, i.e. when the infinitive exterior of the objects cannot 

play roles in distinguishing disjoint relations. 

 It fails to identify the topological relations between two objects with holes (this model can only deal 

with simple entities such as homogeneous, 2 dimensional and connected areas, and lines with exactly 

two end points) 

 It is difficult or impossible to compute the intersections with an entity’s complement since the 

complements are infinite 
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Voronoi-Based 9-Intersection Model 

The 9-intersection model has problems both in theory and in practice, for example, difficulty in 

distinguish several disjoint relations and relations with complex entities with holes; and difficulty or 

impossibility of computing the intersections with an entity’s complement, since the complements are 

infinite. This approach is intended to deal with these handicaps by using Voronoi’s regions. The 

Voronoi region of an entity is defined as the area containing all locations closer to itself than to any 

other [27]. 

By replacing the complement of an object with its Voronoi region, the new 3 X 3 matrix can be 

formulated as: 

 
[
           

              

              
] 3.3 

Where Av is object A’s Voronoi region and Bv is object B’s Voronoi region. 

Here, each object has limited neighbors instead of having relations with all other objects. The 

disjoint relationships and relationships between complexes objects can be distinguished. It is possible 

and easier to compute the five exterior-based intersections since the Voronoi regions of each object can 

be generated and manipulated. [27] 

4 Models for Representing Spatial Relationships and Topology.  

Many vision problems may be formulated in an abstract setting with solid theoretical foundations from 

graph theory. Additionally, graphs allow abstracting the exact shape and positioning of the objects 

under study and thus improve the potential applications and the efficiency of many graph based vision 

algorithms. The use of graphs within the computer vision framework is not new. However, there is a 

growing interest toward an explicit formulation of vision problems as graph problems. The recent trends 

in this field concern: the graph partitioning, graph indexing, graph matching and clustering and the 

graph generalization problems. The potential applications of such problems are respectively the 

segmentation, the image data base retrieval, the object recognition and classification and the object 

recognition and modeling [28]. 

However, graphs used in vision may be quite big and many graph algorithms have a high 

computational cost. For example, a simple graph encoding a 512×512 regular grid is defined by O(512
2
) 

vertices and edges. In the same way the brute force approach of graph matching requires a 

computational cost of O(n!) where n is the number of vertices [28]. 

Curvature Tree 

In [1], the authors propose an image representation based in a curvature tree (CT). The CT is a rooted, 

directed, unordered, and acyclic graph T=(V, E), where V is a set of nodes and E is a set of edges. The 

CT has a single root node at level 0, representing the background of the image, the external contour of 

the primary objects are stored at the first level nodes, and the contours of possible holes are at the 

second level nodes, and so on. An example is shown in Fig. 2: Curvature tree representation (b) of a 

multi-object image (a). 
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Fig. 2: Curvature tree representation (b) of a multi-object image (a) 

Triangle-area representation (TAR) of each closed boundary of an object or hole is stored at the 

corresponding node. Although this tree hierarchy reflects the inclusion relationships between the objects 

and holes, the adjacency relationships are not represented. 

Region Adjacency Graph (RAG) 

This representation is defined from a given partition of the image, by associating one vertex to each 

region and by creating an edge between two vertices if the associated regions share a common 

boundary. This corresponds to a simple graph without any double edge between vertices nor self-loops. 

The RAG model is usually applied as a merging step to overcome the over-segmentation produced 

by a previous splitting algorithm. In this case, the edge information may be interpreted as a possibility 

to merge the two regions identified by the vertices incident to the edge. Such a merge operation implies 

to collapse the two vertices incident to the edge into one vertex and to remove this edge together with 

any double edge between the newly created vertex and the remaining vertices. 

The RAG model encodes only the existence of a common edge between two regions, and this does 

not provide enough information to differentiate a meets relationship from a contains or inside one [29]. 

The edges of the RAG implicitly encode the adjacency relationship between regions, but in some 

approaches, such as [30], the edges have been explicitly labeled with the relationships between regions. 

In this case, they consider topological relations (adjacent and disjoint) and order relations (beside, 

horizontally align, vertical aligned, above and below), grouped in 3 sets: topological relations, 

horizontal relations and vertical relations. Using this encoding, an edge may represent several 

relationships, for example “adjacent, above”, instead of the single adjacency relationship encoded by 

the traditional RAG. 

Regular Pyramids 

Regular image pyramids are a sequence of images with decreasing resolution. Each image of this 

sequence is called a level of the pyramid. Using the neighborhood relationships defined on each image, 

the reduction window relates each pixel of the pyramid with a set of pixels defined in the level below 

[31]. An example regular pyramid representation can be seen in Fig. 3: Regular pyramid representation. 
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Fig. 3: Regular pyramid representation 

 

Regular pyramids have been widely used in image segmentation, shape analysis, surface 

reconstruction and motion analysis. However, the rigidity of the vertical structure of regular pyramids 

induces several drawbacks, such as the shift-dependence and scale-dependence problem, and the limited 

number of regions encoded at a given level of the pyramid. The fixed size and shape of the reduction 

window together with the fix value of the reduction factor induce a poor ability of regular pyramids to 

adapt their structure to the data [31]. 

Irregular Graph Pyramids 

Not using the regular pyramid approach implicates that the horizontal and vertical neighborhood 

relations need to be explicitly represented. This can be achieved by using a region adjacency graph 

(RAG).  In these graphs   (   ) the vertices represent the cells or regions, and the edges represent 

the neighborhood relations of the regions. The graph content is stored in attributes attached to both 

vertices and edges (i.e. color, size, gray values of the pixels, a weight measuring the difference between 

the two end points).  

 

Fig. 4: Irregular pyramid representation 

The irregular graph pyramid is then a stack of successively reduced graphs (being the base level the 

high resolution input image).  Each graph is built from the graph below by selecting a set of vertices 

named surviving vertices and mapping each non surviving vertex to a surviving one. Therefore each 
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non-surviving vertex is the child of a surviving one which represents all the non-surviving vertices 

mapped to it and becomes their father (See Fig. 4: Irregular pyramid representation) [32]. The models 

based on the irregular pyramid framework encode naturally the composed of relationship [29]. 

Roughly speaking, the decimation process to build the levels can be summarized in the following 

steps [31]: 

1 The selection of a set S of surviving vertices 

2 The definition of a set of edges N linking each non-surviving vertex to its father. 

3 The contraction of the set of edges N 

4 The removal of all multiple edges and self-loops 

The definitions of the sets S and N vary according to the considered method. 

Using simple graphs (graphs without multiple edges and self-loops) as the levels of the pyramid, the 

encoding of the spatial structure of the image might not be accurate. By not allowing multiple edges, the 

presence of several disconnected boundaries between two regions cannot be represented (See Fig. 5: 

Inadequacy of simple graphs for representing certain topological configurations). 

 

Fig. 5: Inadequacy of simple graphs for representing certain topological configurations 

The left and right regions of the left image in Fig. 5: Inadequacy of simple graphs for representing 

certain topological configurations share two distinct boundaries. A reduction process such as the one 

defined in the stochastic and adaptative pyramids frameworks provides a final graph encoding these 

multiple boundaries by a single edge [31].  The lack of self-loops does not allow to differentiate 

inclusions from adjacencies relationships. The existence of a common edge between two vertices does 

not provide enough information to differentiate a meets relationship from a contains or inside one (See 

Fig. 6: In the ideal segmentation of these images, they are represented by the same RAG.). In this case, 

two different configurations may be encoded by the same RAG. 
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Fig. 6: In the ideal segmentation of these images, they are represented by the same RAG. 

Dual Graph Pyramids 

To overcome these problems, the dual graph pyramids are introduced. In order to correctly represent the 

embedding of the graph in the image plane, the dual graph  ̅  (  ̅  ̅) of the RAG is additionally stored 

at each level. The RAG is also replaced by a RAG+ (enhanced region adjacency graph), which is a 

RAG that includes non-redundant self-loops or parallel edges [32]. Using the dual graph, the 

meaningful self-loops and parallel edges can be determined. 

Given an initial planar graph  , the vertices of its dual  ̅ are located inside every face of  . The 

edges of  ̅ connect those dual vertices of which the corresponding faces are adjacent. The levels of the 

pyramid are represented as dual pairs (     ̅ )  . In this case, the edges of the dual graph represent the 

borders of the cells in each level k and the vertices represent meeting points of at least three edges from 

the original RAG [31]. The construction of the dual graph induces a one to one mapping between the 

edges of both graphs. 

4.1.1 Contraction Kernels 

Within the dual graph pyramid framework the reduction process is performed by a set of edge 

contractions. The edge contraction collapses two adjacent vertices into one vertex and removes the 

edge. Many edges except self-loops can be contracted independently of each other and also in parallel. 

This set is called a Contraction Kernel (CK) [29]. 

A CK is defined on a graph   (   ) by a set of surviving vertices S and a set of non-surviving 

edges N such that [31]: 

 (   ) is a spanning forest of G 

 Each tree of (   ) is rooted by a vertex of S 

The contraction of the graph reduces the number of vertices while maintaining the connections to 

other vertices. As a consequence, the decimation of a graph by a CK may induce the creation of some 

redundant edges. In [32], the authors propose using the Minimum Spanning Tree method (See Annex 1) 

to find the CKs (al the nodes that will be contracted into a single node) in each level. 
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Fig. 7: Edge contraction step. In (a), the surviving nodes of the primal graph are marked with a black border. In 

(b), the corresponding dual graph is shown. In (c), one edge has been contracted. In (d), all possible edge 

contractions are made; the dual nodes marked in black are the ones encoding redundant information. 

The contraction process must follow two steps [31]: 

1 A set of edge contractions on G0 encoded by the CK(   ). The dual of the contracted graph G1 is 

computed from   ̅  by removing the dual of the edges contained in N (See Fig. 7: Edge contraction 

step. In (a), the surviving nodes of the primal graph are marked with a black border. In (b), the 

corresponding dual graph is shown. In (c), one edge has been contracted. In (d), all possible edge 

contractions are made; the dual nodes marked in black are the ones encoding redundant 

information.). 

2 The removal of redundant edges encoded by a CK applied on the dual graph. The edge contractions 

performed in the dual graph has to be followed by edge removals in the initial one in order to 

preserve the duality between the reduced graphs (See Fig. 8: Edge removal step. In (a) is shown the 

final state of the edge contraction step on the primal graph. In (b) the dual edges have been 

contracted and the corresponding primal edges have been removed. (c) represents the final state of 

the process. Meaningful double edges are maintained.). 

The characterization of these edges requires a better description of the topological relationships 

between the objects described by the graph. The redundant edges belong to one of the following 

categories [29]: 

 Redundant double edge:  These edges encode multiple adjacency relationships between two vertices 

and define degree 2 faces. They can be characterized in the dual graph as degree 2 dual vertices. In 

terms of partition’s encoding, these edges correspond to an artificial split of one boundary between 

two regions. 

 Empty self-loop: These edges correspond to a self-loop with an empty inside. These edges define 

degree one faces and are characterized in the dual graph as degree one vertices. Such edges encode 

artificial inner boundaries of regions. 
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Fig. 8: Edge removal step. In (a) is shown the final state of the edge contraction step on the primal graph. In (b) 

the dual edges have been contracted and the corresponding primal edges have been removed. (c) represents the 

final state of the process. Meaningful double edges are maintained. 

The preservation of the meaningful edges by the two step strategy defined above induces a one to 

one mapping between the edges of the graph and the region boundaries [31]. 

Although the problem of having two regions with distinct meeting boundaries can be solved using 

the dual graph contraction method, the problem with the contains / inside relationships distinction 

remains unsolved. The encoding of the adjacency between two regions one inside the other can be 

encoded by two edges: one encoding the common border between the two regions and one self-loop 

incident to the vertex encoding the surrounded region (See Fig. 9: The dual graph does not represent 

properly the inclusion relationship) [29]. 

 

 

Fig. 9: The dual graph does not represent properly the inclusion relationship 

However, one may exchange the surrounded vertex without modifying the incidence relationships 

between both vertices and faces. This last remark shows that the contains/inside relationship cannot be 

characterized locally within the dual graph [29]. 

4.1.2 Dual Graph Pyramids Drawbacks 

Dual graph pyramids present some drawbacks that limit the relationships that can be represented and 

introduce problems for its computational implementation. These are: 

 The contains/inside relationship cannot be encoded properly using the dual graph method. 

 This approach needs an explicit encoding of the dual graph, therefore, two data structures must be 

encoded and maintained through the pyramid levels. 
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Combinatorial Maps and Combinatorial Pyramids 

A Combinatorial Map (CM) may be understood as a planar graph encoding explicitly the orientation of 

edges called darts, each dart having its origin at the vertex it is attached to. A CM can be defined as 

  (     ), where D is a set of darts (an edge connecting two vertices is composed of two darts d1 

and d2, each dart belonging to only one vertex),  is the reverse permutation which maps d1 to d2 and d2 

to d1 and  is the successor permutation which encodes the sequence of darts encountered when turning 

around a vertex [29]. In Fig. 10: From a plane graph to a combinatorial map this transformation is 

shown. 

 

 

Fig. 10: From a plane graph to a combinatorial map 

 
Given a combinatorial map   (     ) its dual is defined by   (     ) with      . The 

cycles of the permutation   encode the set of darts encountered when turning around a face of G (See 

Fig. 11: Combinatorial map and its corresponding dual map). The  ,   and   cycles of a dart may be 

respectively understood as elements of dimensions 0, 1 and 2. One of the major differences between a 

combinatorial map and a usual graph encoding a partition is that, although a combinatorial map may be 

seen as a planar graph with a set of vertices (the cycles of   or   ) connected by edges (the cycles of   

or   ), the combinatorial map encodes additionally the local orientation of edges around each vertex 

thanks to the order defined within each cycle of   [29]. 
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Fig. 11: Combinatorial map and its corresponding dual map 

4.1.3 Contraction and Removal 

Before explaining the contraction and removal process, a few definitions given by [33] are needed (See 

Fig. 12: Definitions within the combinatorial map framework  for an illustration of each definition): 

Self-loop: An edge   ( ) is called a self-loop iff:      ( ), which means that its corresponding 

dart in the   permutation is also part of the   orbit around the vertex. 

Self-direct-loop: A dart is called a self-direct-loop iff: ( )    , which means that the dart and its 

 permutation must be consecutive in the   orbit. 

Bridge: The edge   ( )  is called a bridge iff:      ( ) , which means that the edge   ( ) 
connects to different components of the graph. 

 

Fig. 12: Definitions within the combinatorial map framework 

Contraction operations are controlled by contraction kernels (CK) such as the ones explain for the 

dual graph pyramid, and may induce the creation of some redundant edges (See Fig. 13: Edge 

contraction step in the combinatorial map). Using the dual graph framework, such redundant edges are 

characterized by their associated dual edges, which are incident to dual vertices with a degree lower 

than 3. Using the CM framework one of the darts of a redundant edge   ( ) is either a self-direct-loop 

or belongs to an orbit of  
 
with cardinal equals to 2. This last condition characterizes dual vertices with 

a degree 2 [31]. 
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Fig. 13: Edge contraction step in the combinatorial map 

 The removal of redundant edges is performed as in the dual graph reduction scheme by a removal 

kernel. This kernel is however decomposed in two sub-kernels: A removal kernel of empty self-loops 

which contains all darts incident to a degree 1 dual vertex and a removal kernel of empty double edges 

which contains all darts incident to a degree 2 dual vertex [29]. 

In order to preserve the number of connected components of the original CM, bridges must be 

excluded from removal operations. Furthermore, self-direct-loops are excluded from this general 

operation, and are treated as special cases [29]. 

The two dual points of view on merging regions are performed by two dual operations on the 

combinatorial map and its dual. Thus many particular cases of one operation may be retrieved thanks to 

the particular cases of the other. For example, since bridges are forbidden for removal operation the 

dual of a bridge, i.e. a self-loop, is forbidden for contraction [34]. 

As in the dual graph framework, an inside relationship between two regions is encoded by two 

edges: one edge encodes the common border between the two regions while the other encodes a self-

loop incident to the vertex associated to the surrounding region. Considering the example already used 

for dual graph pyramids (See Fig. 6: In the ideal segmentation of these images, they are represented by 

the same RAG.), one can exchange the surrounded vertex without changing the order of the darts around 

the vertex   ( ) . Therefore, the two drawings shown in this example are encoded by the same 

combinatorial map. One cannot determine from the formally specified combinatorial map which part is 

inside and which is contained (See Fig. 14: The encoding of an ideal segmentation of the image (a) by a 

combinatorial map may be drawn using either (b) or (c)) [29]. 

 

Fig. 14: The encoding of an ideal segmentation of the image (a) by a combinatorial map may be drawn using 

either (b) or (c). 

This ambiguity in the location of the self-loop is related to the fact that the two darts of a self-loop 

play a symmetric role in the cycle   to which they belong [29].  

The determination of the contains and inside relationships requires thus to define a criterion in order 

to differentiate the two darts of a self-loop. This criterion is based on the orientation explicitly encoded 
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by combinatorial maps. The starting dart of a self-loop is computed taking into account the orientations 

of all the darts in the   orbit. It is said that    is the starting dart of the loop if the sequence of darts 

encoding the inside connected component is enclosed between    and      (  ). Given a vertex 

incident to a self-loop, this last characterization allows to determine the regions inside the region 

encoded by this vertex [29]. 

4.1.4 Advantages of Combinatorial Pyramids 

1 CMs explicitly encode the orientation of darts around one vertex. This information should be helpful 

to differentiate some configurations within the graph matching and clustering frameworks. This 

information is not encoded by RAGs nor explicitly available in dual graph data structure [28]. 

2 Given a CM, its dual is defined on the same set of darts by the permutations      
 
and  . The 

efficiency of this transformation avoids an explicit encoding of the dual graph. Therefore, only one 

data structure has to be encoded and maintained along the pyramid [28]. 

3 CM may be defined in any dimensions [28]. 

4 Since a surviving dart is always linked to its vertex, which must survive by definition, redefinition 

and renaming of the surviving darts is no needed. Hence, the equivalent CKs can be expressed by 

simple subset relations [34]. 

4.1.5 Drawbacks of Combinatorial Pyramids 

1 Certain structural entities are not represented explicitly, i.e. vertices and faces are implicitly defined 

and need extra processes to be identified, or to receive further attributes like in attributed relational 

graphs [34]. 

2 The composed of relationship is not encoded in this framework [29]. 

5 Bridging the Semantic Gap 

In early stages of the development of CBIR, research was primarily focused on exploring various 

feature representations, hoping to find a “best” representation for each feature. In these systems, users 

first select some visual features of interest and then specify the weight for each representation. This 

burdens the user by requiring a comprehensive knowledge of low-level feature representations in the 

retrieval system. There are two more important reasons why these systems are limited: the difficulty of 

representing semantics by means of low-level features and the subjectivity of the human visual system. 

One approach to solve this problem is by means of manual image annotation, but this is a tedious 

task and often it is difficult to make accurate annotations on images. There are many annotation tools 

available but human input is still needed to supervise the process. So, there should be a way to 

minimize the human input by making the annotation process semi or fully automatic. In the latter case, 

although there is much research on automatic image annotation, the results often do not really satisfy 

the retrieval requirements because of the flexibility and variety of user needs [35].  

Algorithms providing global annotations, such as distinguishing between city and landscape images 

or between images acquired indoors and outdoors, have a higher success rate than algorithms 

attempting to detect specific objects, such as cars, cows and sunglasses. Automatic recognition of 

activities, events and abstract or emotive qualities in images currently performs rather poorly [36].  

Many approaches have been proposed to reduce the gap between high-level image semantics and 

low-level image features. 
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Automatic Image Annotation (AIA) 

Applied to image retrieval, the semantic annotation of images creates a conceptual understanding of the 

domains that the image represents, enabling software agents, i.e. search engines, to make more 

intelligent decisions about the relevance of the image to a particular user query [37].  

Annotations are most frequently assigned at the global level and even when assigned locally the 

extraction of relational descriptors is often neglected. However, current annotation system might 

recognize and identify a beach and an ocean in an image but fail to represent the fact that they are next 

to each other. Therefore, to enrich the semantic description of the visual information, it is important to 

capture such relations [35].  

Different machine learning methods for image annotation model the association between words and 

images or image regions. These include translation models, classification approaches and relevance 

models. While most models have used the co-occurrence of image regions and words, few have 

explored the dependence of annotation words on image regions [38].  

There are two approaches to associating textual information with images described in the computer 

vision literature: annotation and categorization. In annotation, keywords or detailed text descriptions 

are associated with an image, whereas in categorization, each image is assigned to one of a number of 

predefined categories [36].  

5.1.1 Classification Models 

In the classification models, each annotated word is treated as an independent class and one semantic 

keyword corresponds to one classifier. The representative works are automatic linguistic index for 

pictures, content-based annotation method with Support Vector Machine (SVM) and Bayes Point 

Machine, estimating the visual feature distributions associated with each keyword. [39] 

In [40] an approach of automatic linguistic indexing of pictures is presented, where categories of 

images, each corresponding to a concept, are profiled by statistical models, in particular, the two-

dimensional multi-resolution hidden Markov model (2D MHMM). The pictorial information of each 

image is summarized by a collection of feature vectors extracted at multiple resolutions and spatially 

arranged on a pyramid grid. An element in an image is a block instead of a pixel. Features computed 

from one block at a particular resolution form a feature vector and are treated as multivariate data in the 

2D MHMM. The 2D MHMM aims at describing statistical properties of the feature vectors and their 

spatial dependence. The 2D MHMM fitted to each image category plays the role of extracting 

representative information about the category. In particular, a 2D MHMM summarizes two types of 

information: clusters of feature vectors at multiple resolutions and the spatial relation between the 

clusters, both across and within resolutions. As a 2D MHMM is estimated separately for each category, 

a new category of images added to the database can be profiled without repeating computation involved 

with learning from the existing categories. Since each image category in the training set is manually 

annotated, a mapping between profiling 2D MHMMs and sets of words can be established. For a test 

image, feature vectors on the pyramid grid are computed. Consider the collection of the feature vectors 

as an instance of a spatial statistical model. The likelihood of this instance being generated by each 

profiling 2D MHMM is computed. To annotate the image, words are selected from those in the text 

description of the categories yielding highest likelihoods. 

In [41], the SVM method approach is described as follows: the images are processed by taking for 

each pixel a fixed number of partially overlapping image subdivisions (tiles) that contain it, each of 

which is then independently classified by a multi-class Support Vector Machine (SVM) constructed 

according to “one per class” strategy. Each SVM is thus trained to discriminate between one class and 

the others. Before submitting a tile to a classifier, in the training or in the testing phase, a description of 

it is computed in terms of low-level features. They used joint histograms as feature vectors. After the 

satisfactory training of a classifier, they designed a strategy for annotating whole images. In order to 

label each pixel of the image as belonging to one of the classes, the tiles are sampled at fixed intervals. 
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Since several tiles overlap, every pixel of the image is found in a given number of tiles. Each tile is 

independently classified, and the pixel’s final label is decided by majority vote. 

An approach to soft annotation, using Bayes Point machines, is to give images a confidence level for 

each trained semantic label. It has been explored in [2]: Content-based Soft Annotation (CBSA). This 

vector of confidence labels can then be exploited to rank relevant images in case of a keyword search. 

In this method, each training image is manually labeled with one of the K pre-selected semantic labels. 

The labeling scheme is simple since it does not involve segmenting of images, or manual annotating of 

an image with multiple keywords and probabilities. Using the labeled instances, they train an ensemble 

of K binary classifiers (using Bayes Point Machines (BPMs)). Each classifier assumes the task of 

determining the confidence score for a semantic label. They automatically annotate images using the 

classifiers: each image is classified by the K classifiers and assigned a confidence score for the label 

that each classifier is attempting to predict. As a result, a K-nary label-vector consisting of K-class 

membership is generated for each image. CBSA performs annotation using global features.  

5.1.2 Probabilistic Models 

One well-known approach is to model image annotation as translating visual representation of concepts 

in an image to their textual representation.  

In the translation model used in [38], images are segmented to images regions using the N-cut 

algorithm. Feature vectors capturing the image attributes of a region are clustered using the K-means 

clustering method to generate the visual vocabulary or the lexicon for image representation. Each image 

region is mapped to an element of this lexicon referred to as a blob. The   Expectation-Maximization 

(EM) is used to estimate the translation probabilities. They propose a method to use a hierarchy defined 

on the annotation words derived from a text ontology to improve automatic image annotation and 

retrieval. Specifically, the hierarchy is used in the context of generating a visual vocabulary for 

representing images and as a framework for the hierarchical classification approach for automatic image 

annotation. In the hierarchy of annotation words that include other concepts related to the annotation 

words, images regions are grouped under each node in the hierarchy. An image region r in image I is 

placed under a concept w if either  

 w is an annotation word for the image I, or,  

 One of its hyponyms (descendants in the hierarchy) annotates the image, I. 

While the translation models capture the correlation between blobs and words, the dependencies 

between blobs or words are not captured. 

Graphical models of increasing sophistication have been proposed for capturing the dependence 

between words and image regions: Gaussian mixture models (GM-Mixture), Gaussian-Multinomial 

LDA (GM-LDA) and correspondence Latent Dirichlet Allocation (LDA) for the image annotation 

problem. These models capture the co-occurrence information by introducing latent variables to link 

image features with keywords. [38] 

GM-mixture assumes a low-dimensional topology, leading to a fully-parametric model where 200 or 

so “latent aspects” are estimated using the EM algorithm [42]. Here, a single discrete latent variable z is 

used to represent a joint clustering of an image and its caption. An image/caption is assumed to be 

generated by first choosing a value of z, and then repeatedly sampling N region descriptions and M 

caption words conditional on the chosen value of z. Given a fixed number of factors K and a corpus of 

images/captions, the parameters of a GM-Mixture model can be estimated by the EM algorithm. This 

yields K Gaussian distributions over features and K multinomial distributions over words which 

together describe a clustering of the images/captions. Since each image and its caption are assumed to 

have been generated conditional on the same factor, the resulting multinomial and Gaussian parameters 

will correspond. An image with high probability under a certain factor will likely contain a caption with 

high probability in the same factor. Computing a region-specific distribution over words is beyond the 

scope of the GM-Mixture model. Conditional on the latent factor variable z, regions and words are 
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generated independently, and the correspondence between specific regions and specific words is 

necessarily ignored. [43] 

The latent Dirichlet allocation (LDA) model is a latent variable model that allows factors to be 

allocated repeatedly within a given document or image. Thus, different words in a document or 

different regions in an image can come from different underlying factors, and the document or image as 

a whole can be viewed as containing multiple topics [43].  

The correspondence LDA (Corr-LDA) is a model that combines the flexibility of GM-LDA with the 

associability of GM-Mixture. With this model, they achieve simultaneous dimensionality reduction in 

the representation of region descriptions and words, while also modeling the conditional 

correspondence between their respective reduced representations. Corr-LDA can be viewed in terms of 

a generative process that first generates the region descriptions and subsequently generates the caption 

words [43].  

The independence assumptions of the Corr-LDA model are a compromise between the extreme 

correspondence enforced by the GM-Mixture model, where the entire image and caption are conditional 

on the same factor, and the lack of correspondence in the GM-LDA model, where the image regions 

and caption words can conceivably be conditional on two disparate sets of factors. Under the Corr-LDA 
model, the regions of the image can be conditional on any ensemble of factors but the words of the 

caption must be conditional on factors which are present in the image [43].  

While GM-LDA models better the joint distribution of words and regions, it fails to model the 

relationship between them. Corr-LDA finds much better predictive distributions of words than either 

GM-LDA or GM-Mixture. It provides as flexible a joint distribution as GM-LDA but guarantees that 

the latent factors in the conditional Gaussian (for image regions) correspond with the latent factors in 

the conditional multinomial (for caption words). Furthermore, by allowing caption words to be 

allocated to different factors, the Corr-LDA model achieves superior performance to the GM-Mixture 
which is constrained to associating the entire image/caption to a single factor [43].  

The GM-Mixture predicts completely incorrect words if the average features do not easily 

correspond to a common theme. For example, the background of fish, reefs, water is not the usual blue 

and GM-Mixture predicts words like “fungus", “tree", and “flowers." 

According to [43] the Corr-LDA model gives the best performance and correctly labels most of the 

example pictures. 

Relevance models for image annotation have shown significant performance improvements. The 

model learns the joint probability of associating words to image features from training set and uses it to 

generate the probability of associating a word to a given query image [38].  

One approach assumes that image annotation could be viewed as analogous to the cross-lingual 

retrieval problem and proposed a cross-media relevance model (CMRM) [42]. 

 Another approach proposes continuous-space relevance model (CRM) which assumed that every 

image is divided into regions and each region is described as a continuous-valued feature vector. Given 

a training set of images with annotations, a joint probabilistic model of image features and words is 

estimated. The feature vectors are based on automatic segmentation of the target image into regions and 

are modeled using a kernel-based probability density function. The annotation words are modeled with 

a multinomial distribution. Then the probability of generating a word given the image regions can be 

predicted. The CRM directly models continuous features, so it does not rely on clustering and 

consequently avoids the granularity issues.  It does not make any assumptions about correspondence of 

annotation words to image regions. It is meant to reflect the prominence of words in a given annotation 

[42]. 

Another relevance model (MBRM) in which a Multiple Bernoulli model is used to generate words 

instead of the multinomial one as in CRM has been proposed. This model explicitly focuses on presence 

or absence of words in the annotation, rather than on their prominence, and it labels the entire picture 

and not specific image regions in a picture. MBRM adopts multiple Bernoulli distribution to replace the 

multinomial distribution in CRM. Actually, it is because that MBRM provides a solution based on the 
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multi-label learning instead of a multi-class one as CRM. This method divides each image with a fixed-

size rectangular grid. Given a new (un-annotated) image they split it into regions   , compute feature 

vectors         for each region and then use the probability of a joint observation *     +  to 

determine what subset of vocabulary w* is most likely to co-occur with the set of feature vectors [42].  

In image annotation, a multinomial would split the probability mass between multiple words. For 

example, if an image was annotated with “person, grass”, with perfect annotation, the probability for 

each word would be equal to 0.5. On the other hand another image which has just one annotation 

“person” would have a probability of 1.0 with perfect annotation. If we want to find images of people, 

when rank ordering these images by probability the second image would be preferred to the first 

although there is no reason for preferring one image over another. The problem can be made much 

worse when the annotation lengths for different images differ substantially. A similar effect occurs 

when annotations are hierarchical. The Bernoulli model avoids this problem by making decisions about 

each annotation independent of the other words [42]. 

While the above models predicted the probability,  (   ) of an annotation word   given an image 

 , one is interested in generating a set of annotation words * +. 
While annotation of certain length can be selected by ranking the probabilities  (   ), the Coherent 

Language Model has been proposed. It predicts the annotation words * +  by relaxing the estimation of 

 (* +  ) to estimate the probability,  (    ) of a language model    to generate the annotation words 

for the image I. It takes into account word-to-word correlation. Instead of predicating each annotated 

word independently for a given image, this approach estimates a coherent language model for the image 

[38]. 

Except for the correspondence LDA model that captures the dependence between image regions and 

word annotations, and Coherent Language Model that captures the correlation between annotated words 

of an image, all the above models assume independence of word and image element events in their 

generative models for image annotation [38]. 

5.1.3 Ontology-Based Models 

An ontology defines a set of representational terms called concepts. An ontology can be constructed in 

two ways: domain-dependent or generic. Generic ontologies are definitions of concepts in general; such 

as WordNet, which defines the meaning and interrelationships of English words. A domain-dependent 

ontology generally provides concepts in a specific domain, which focuses on the knowledge in the 

limited area, while generic ontologies provide concepts more comprehensively [44]. 

Ontology contains concepts (entities) and their relationships and rules. Adding a hierarchical 

structure to a collection of keywords produces a taxonomy, which is an ontology as it encodes the 

relationship “is a” (i.e. a dog is an animal). An ontology can solve the problem that some keywords are 

ambiguous. For example, a “leopard” could be a large cat, a tank, a gecko or a Mac operating system. 

Ontologies are important for the Semantic Web, and hence a number of languages exist for their 

formalization, such as OWL and RDF. [36] 

From a computing science point of view, an ontology represents an area of knowledge that is used 

by people, databases, and applications that need to share domain information. Ontologies include 

computer-usable definitions of basic concepts in the domain and the relationships among them. [37] 

The implementation of an ontology is generally taxonomy of concepts and corresponding relations. 

In an ontology, concepts are the fundamental units for specification, and provide a foundation for 

information description. In general, each concept has three basic components: terms, attributes and 

relations. Terms are the names used to refer to a specific concept, and can include a set of synonyms 

that specify the same concepts. Attributes are features of a concept that describe the concept in more 

detail. Finally relations are used to represent relationships among different concepts and to provide a 

general structure to the ontology [44]. 
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The use of text ontologies as a basis for defining visual vocabulary or as a framework for automatic 

image annotation increases the number of concepts an image annotation system can recognize for a 

given image [38].  

The Ontology Working Language (OWL) has become the de-facto standard for expressing 

ontologies. It adds extensive vocabulary to describe properties and classes and express relations 

between them (such as disjointness), cardinality (for example, "exactly one"), equality, richer typing of 

properties, and characteristics of properties (such as symmetry). OWL is designed for use by 

applications that need to process the content of information rather than just present information to 

humans [37]. 

All semantic models use two types of properties to build relationships between individuals (classes): 

Datatype properties and Object properties. When assigning properties to a class, all its sub-classes 

inherit their parent class properties.  

As stated in [37], deciding on the appropriate type of property to use is not a trivial task. Every use 

of these properties has to be done thoughtfully, whereas object properties link individuals of different 

classes together, datatype properties can just point to immediate values (e.g. text strings), which are 

meaningless to a reasoning software, except for performing a string-based search. For instance, 

allocating datatype properties to the person class in order to give each new instance a first name, a last 

name is a correct use of datatype properties, because they cannot be reused by another individual. On 

the other hand, object properties are required to assign someone a nationality. Indeed, a country is more 

than a mere string. A country can have properties such as a currency, a capital city, many towns and 

villages, a language, a national flag and anthem, etc. A country needs thus to be an instance. 

Furthermore, such useful classes might be defined in already existing ontologies which enables their 

reusability [37]. 

Furthermore, in order to increase the automation of available data, inverse properties are used. 

Therefore, there is no privileged way to reason; all the properties are added in a dynamic manner (i.e. 

Object Properties such as hasPlayer can have inverse property isPlayerOf) [37]. 

At present, semantic annotation is implemented by some markup language such as XML based on a 

shared ontology definition. The markup language provides a mechanism for describing information in a 

structural way. The shared ontology definition provides a standard repository of concepts, which are 

used to describe all the entities that may be related to the image content [44]. 

While a number of ontologies and vocabularies are available, they tend to suffer from at least one of 

the following disadvantages listed in [36]: 

 The vocabularies or ontologies developed for commercial purposes, such as those belonging to 

CORBIS and Getty Images, are proprietary competitive tools and are not available for public use. 

 The vocabularies or ontologies developed for specific areas of application, such as the Iconclass 

ontology, while containing a wealth of terms, are concentrated on too narrow a domain to be useful 

for annotating general collections of images. 

The main disadvantage of using ontologies is that the domain ontology is usually incomplete, 

because it will not include everything a user might want to say about an image. 

5.1.4 Comparison between Some of the Annotation Methods 

As these algorithms seem to be so different from each other, it is not easy to answer such questions as 

which models are better, what the connections among them are, and how they should be utilized. 

In [45] an overall comparison has been made between several methods. 

MBRM and CLP: They both provide the solutions within the context of the multi-label learning, 

while CLP employs a more sophisticated form. In the label propagation, CLP give more chance to rare 

word and relatively weaken the bias to common words, while MBRM suffer from the bias. 

Accordingly, CLP achieves wider coverage of correctly annotated words and recall than MBRM [45]. 



32   Annette Morales González-Quevedo and Edel García Reyes 

 

CMRM and CRM: Both methods adopt the probabilistic relevance model between images and 

words to perform basic image annotation. However, they differ in the representation of visual feature. 

CRM uses the continuous region features to calculate the image similarity, while CMRM uses blob 

histograms. Because the blobs are obtained by clustering the region features, much information has 

been lost. Therefore, CRM can better reflect the image relation than CMRM [45].  

Better performance of MBRM and CLP than CRM implies that the formulation of image annotation 

as a multi-label learning problem is really preferable to as a multi-class learning problem [45]. 

Considering each word correlation individually, their different roles on the performance 

improvement can be observed. First, the statistical correlation by co-occurrence, i.e. SC, gains obvious 

improvement on the measure of NumWord, but it losses on the average precision. This indicates that 

the method is capable of connecting more words through the statistical information, but the connections 

cannot ensure the relatedness on the semantic level [45]. 

The combination of SC and CCS achieves the best performance. It shares the advantages from both 

correlations and gives a relatively precise and comprehensive representation of word semantic 

relatedness [45]. 

CMRM and CLM: Both models share blob-based image features, while CLM designs a new 

language model to represent the image-to-word relation and adopts the EM algorithm to update its 

image-to-image relation and the language model. Simply, CLM utilize a more sophisticated learning 

model to improve the image-to-image relation and the image-to-word relation. Accordingly, it boosts its 

performance [45]. 

There are three significant differences between MBRM and CMRM. First, CMRM is a discrete 

model and cannot take advantage of continuous features. In order to use CMRM for image annotation 

we have to quantize continuous feature vectors into a discrete vocabulary (similarly to the translation 

[5] models). MBRM, on the other hand, directly models continuous features. The second difference is 

that CMRM relies on clustering of the feature vectors into blobs. Annotation quality of the CMRM is 

very sensitive to clustering errors, and depends on being able to a-priori select the right cluster 

granularity: too many clusters will result in extreme sparseness of the space, while too few will lead us 

to confuse different objects in the images. MBRM does not rely on clustering and consequently does 

not suffer from the granularity issues. Finally, CMRM also models words using a multinomial process. 

MBRM performs significantly better than all previously proposed models on the tasks of image 

annotation and retrieval [42]. 

5.1.5 Current Approaches for Image Retrieval  

The task of object retrieval is to classify objects found in images. This means to find objects in an 

image that are similar to sample objects in the pre-classified images. There are two problems with this 

task: the first is how we model objects. The second is how we measure similarity of objects.  

When text annotation is nonexistent and incomplete content-based method must be used. Retrieval 

accuracy can be improved by content-based methods. 

The semantic gap makes it difficult for the user to formulate queries against the image library. The 

integrated use of relevance feedback and object-based retrieval can overcome the problem of the 

semantic gap. Content-based Image Retrieval (CBIR) systems automatically extract image contents 

based on image features, i.e. color, texture, and shape. Relevance feedback methods are applied to 

CBIR to integrate users’ perceptions and reduce the gap between high-level image semantics and low-

level image features [9]. 

In CBIR systems, image processing techniques are used to extract visual features such as color, 

texture and shape from images. Therefore, images are represented as a vector of extracted visual 

features instead of just pure textual annotations. An object model is defined to represent images based 

on visual features. A user formulates a query by providing examples of images similar to the ones he 

wishes to retrieve. The system uses a query model to convert the image into an internal representation 

of query, based on features extracted from input images. A retrieval model performs image retrieval by 
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computing similarities between images in object and the query representations, and the results are 

ranked based on the computed similarity values. Overall similarity (distance) between an object and the 

image query is computed as a weighted summation of similarities (distances) over the feature set. The 

object, query, and retrieval models together define a CBIR model [9]. 

The key idea is that we should incorporate human perception subjectivity into the retrieval process 

and provide users opportunities to evaluate retrieval results and automatically refine queries on the basis 

of those evaluations. 

There are two different modes of user interactions involved in image retrieval systems. In one case, 

the user types in a list of keywords representing the semantic contents of the desired images. In the 

other case, the user provides a set of examples images as the input and the retrieval system will try to 

retrieve other similar images. In most image retrieval systems, these two modes of interaction are 

mutually exclusive. In [46], the authors argue that combining these two approaches and allow them to 

benefit from each other yields a great deal of advantage in terms of both retrieval accuracy and ease of 

use of the system. 

Region-Based Retrieval 

Region based approaches are based on the fact that semantic meaning of an image is often contained in 

object level in the image. User is often interested in objects in images, not the whole. For example, user 

might be interested in an image of a tiger on grass only because of the tiger, but not care about the 

grass. Representing images on region level gives the possibility of inferring in object level [47]. 

Region-based image retrieval methods attempt to overcome the drawback of global features by 

representing images at object-level, which is intended to be close to the perception of human visual 

system. The NeTra and Blobworld are two earlier region-based image retrieval systems. During 

retrieval, a user is provided with segmented regions of the query image, and is required to assign several 

properties, such as the regions to be matched, the features of the regions, and even the weights of 

different features [48]. 

A region-based retrieval system applies image segmentation to decompose an image into regions, 

which correspond to objects if the decomposition is ideal and retrieves images based on the similarity 

between regions [9]. 

In [48], the authors proposed a region-based image retrieval method using relevance feedback. They 

segment the images into regions and describe those regions with the color moment. Enlightened by the 

idea of relevance feedback, they designed a scheme that uses users’ feedback information, i.e., positive 

and negative examples, to estimate the region importance of all positive images. Their basic assumption 

is that important regions should appear more times in the positive images than unimportant regions. 

They defined the similarity measure between two images, each one represented by regions. To compute 

the similarity of two images, they first match all regions in the two images. Then they assign the 

matching between two regions, with a significance credit, that indicates the importance of the matching 

for determining similarity between images. 

In [47], they propose a retrieval method using relevance feedback information both on image level 

and on region level. They propose an optimization based semi-supervised learning approach to fuse 

information of the two levels together. The algorithm first predicts region score based on the labeled 

information and prior, then calculates image score, based on which a rank of images is given. 

Score of unlabeled regions are predicted according to labeled regions on a graph G = (V,E) with 

regions as nodes xi   V and similarity between regions i, j as weight wij of edge eij   E. Weights are 

collected in an affinity matrix W representing similarities between any pair of nodes. A region is 

represented by different sets of features (color histogram, texture coarseness). Similarity between two 

regions can be calculated with a distance measure which can be χ
2
, Euclidian, or EMD distance 

depending on the type of the feature. They use three priors for assigning the labels: The first term is the 
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smoothness prior requiring that labels for similar regions should be similar. The second term expresses 

the requirement that predicted labels for the labeled regions should be as close to the given label as 

possible and the third states that for positive feedback on an image, they do not know the exact label for 

all its regions, but they know there is at least one region in the image with high score [47]. 

Relevance Feedback 

Relevance feedback is another approach to reduce the gap between high-level image concepts and low-

level image features by involving the user’s perception of images in the retrieval process. This approach 

gradually refines the original image query based on the feedbacks the user provides on the images 

retrieved at each iteration [9]. 

Since all image low-level features cannot capture high-level semantic concepts, most retrieval 

methods have tried to find an optimum set of feature weights to model the user’s perception based on 

image features (feature weighting). Some CBIR systems ask the user to set the feature weights; 

however, there are several shortcomings to such approaches. Users may find it difficult to express their 

query appropriately in terms of the provided features since they do not initially have a clear idea of the 

information needed. Furthermore, there may be a mismatch between the users’ perception of the visual 

properties and the feature representations that are actually used for retrieval [9]. 

The most crucial issues in relevance feedback of CBIR systems are the following [46]: 

1 How to learn effectively from small sets of feedback samples; 

2 How to accumulate knowledge learned from feedback;  

3 How to integrate low-level visual and high-level semantic features in query and feedbacks. An 

effective relevance feedback system should provide effective solutions to address these three issues, 

in addition many others. 

Relevance feedback approaches have been successfully applied in the information retrieval area. In 

such approaches, the user needs to provide the retrieval system with positive examples, negative 

examples or both. In a CBIR system, positive examples are images that are similar to the images the 

user is looking for, and negative examples are those that are not similar to user’s query. In each retrieval 

iteration, the system uses relevance feedback data to modify feature weights in order to create a more 

accurate query model. Studies shows using only positive example lead to more improvement than only 

negative examples. However, best improvement in retrieval is obtained by using positive and negative 

examples together [9]. 

Recent image retrieval approaches have been proposed based on long-term learning from previous 

feedbacks as well as short-term learning from feedbacks in the current query session. Different 

approaches have been proposed based on Collaborative Filtering (a technique used in recommendation 

systems), Support Vector Machines (a learning and classification method), machine learning methods, 

and probabilistic methods [9]. 

5.1.6 Query Refinement framework 

The Query Refinement framework can be split in two branches: Query Modification and Query 

Weighting [46]. Query Modification allows users to refine the query representation. A user may start 

from a query object that approximately captures his information need. In each iteration of feedback, the 

system modifies the representation of the query to a more suitable representation. Query weighting 

changes the relative weights of different features in the query representation. The re-weighting 

mechanism allows the system to learn the user's interpretation of similarity/distance function [9]. The 

basic idea behind the re-weighting method is to enhance the importance of the dimensions of a feature 

that help in retrieving the relevant images and reduce the importance of those dimensions that hinder 

this process [46]. 
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Query Modification can be achieved using either of two approaches: query expansion and query point 

movement. In the query point movement approach, a query is represented by a single point in a feature 

space and refinement process attempts to move that point toward the direction where relevant points 

were located. On the other hand, query expansion does not assume that a query is represented as a point 

in a multidimensional space. Instead, it modifies the query by selectively adding new relevant objects to 

the query representation [9]. 

In [9] is stated that experimental evaluation have shown that query expansion outperforms query 

point movement in retrieval effectiveness. Another advantage of query expansion over query point 

movement is that query expansion can be coupled with existing information systems without requiring 

any modification being made to them [9]. 

Short-Term and Long-Term Learning 

In relevance feedback-based approaches, a CBIR system learns from feedbacks provided by the user. 

In short-term learning, only the feedbacks for the current search session are used in the learning 

algorithm, and image features are the primary source of data. The main challenge in this approach is to 

find the best combination of image features that presents the user’s query. Such optimum set of features 

can include features that capture similarities between positive images, or features that discriminate 

positive examples from negative ones. Therefore, feature weighting, discriminant analysis, SVM, and 

instant learning methods are widely used in short-term learning [9]. 

Long-term learning approaches utilize the feedbacks collected during prior search transactions. 

Accumulated feedbacks are stored in a search history matrix (See Table 1: An example of a search 

history). A search history matrix, denoted by HN.M, stores the labels provided by the user for image xi, 

i=1,…,M in transaction tk, k=1,..,N. A transaction is the set of feedbacks collected form a user during 

relevance feedback iterations of a search session. It is assumed that the user does not change the query 

image he has in his mind during the relevance feedback iterations. Therefore, each transaction 

corresponds to a semantic and can be represented by labeled images in an L-dimensional space where L 

is the number of images labeled in the transaction. 

 

 

t X1 X2 X3 X4 X5 X6 

Transaction 1 + + - - - - 

Transaction 2 + + - - - - 

Transaction 3 - - + + - - 

Transaction 4 - - - - + + 

Table 1: An example of a search history 

The first step in a long-term learning approach is detecting the number of semantic classes, which is 

the number of concepts presented in a search history matrix, and creating the semantic space by 

defining each semantic class. Then, each image should be assigned to its corresponding semantic class. 

The size of search history matrix is large, statistical models and approaches such as principal 

component analysis and latent semantic analysis are popular in long-term learning approaches [9]. 

Feature Weighting 

In CBIR systems, the distance between two images is computed as a weighted summary of their feature 

distances: 
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Where, wj is the weight for feature j and d is a distance function. Popular distance functions are 

Manhattan, Euclidean, and Cosine distances [9]. 

Relevance feedback data are used to modify the query representation in order to capture user 

perception by updating feature weights. Updated feature weights modify the pair-wise image distances; 

therefore, level of similarity between the query and images in the database are changed for the next 

retrieval iteration. 

Discriminant Analysis 

The objective of discriminant analysis is to find the most discriminant features of data (xi) in the 

original high-dimensional space, and map data points to a projected low-dimensional space in a way 

that discriminant features are preserved. Linear discriminant analysis is a popular method in CBIR area. 

Linear discriminant analysis tries to find the transformation matrix W that maximizes the separation 

between different classes while minimizing within-class scatters in the new subspace. 

When there are only two classes, the process is known as Fisher Discriminant Analysis (FDA). A 

significant problem with FDA is its assumption that negative examples are drawn from the same 

distribution, which is not usually true in the case of image data. Another choice is Multiple 

Discriminant Analysis (MDA) that considers each negative example as a different class and creates a 

(NN+1)-class discriminant analysis problem where NN is the number of negative examples. Again, this 

assumption may not be true and some of negative examples do belong to the same distribution. Biased 

Discriminant Analysis (BDA) keeps negative examples away from positive examples, and clusters only 

positive examples. This means that all positive examples should be located closely in the same area in 

the feature space. However, semantically similar images may not be close to each other in the feature 

space, especially when their relations are defined based on high levels of semantic concepts [9]. 

In [9] is stated that empirical experiments with synthesized data have shown that when the number 

of positive examples (NP) is much higher than the number of negative examples (NN), compacting 

negative examples, and discriminating negative examples from positive examples is the most efficient 

strategy. On the other hand, when NN >> NP, it would be better to compact positive examples and keep 

them away from the mean of negative points. The reason is when the number of positive examples is 

much higher, it would be a heavy burden to compact them or discriminate them from negative 

examples. It would be the same for negative examples when their number is much higher than positive 

points. 

Support Vector Machines (SVM) 

Support vector machines are a core machine learning technology. In the area of image retrieval, SVMs 

have been used for feature weighting. 

In image retrieval by relevance feedback, SVMs can be applied to the image features space. Data 

points are images which are labeled as positive (+1) or negative (-1) [46]. The task of SVMs is to create 

a hyper-plain to separate all images in the database to two group of relevant (+1) and irrelevant (-1) 

images. During the relevance feedback process, an SVM is constructed in each dimension of the feature 

space and the generalization error is computed and features with smaller generalization error are 

assigned larger weights. Generalization error measures how good a classifier can classify training data. 
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In another SVM method, weights are assigned to each types of feature rather than each dimension of 

the features so that only a few weights need to be estimated which may have less risk in relevance 

feedback problems with high dimensionality on the features and small size of training samples. 

In relevance feedback problems, positive examples can be assumed to belong to one class. However, 

negative examples are different from the query in many different ways and may not belong to one class 

[9]. 

Probabilistic Models 

Probabilistic models have also been applied in image retrieval by relevance feedback to find the 

probability that the user selects each image. Bayesian models are widely used to solve such 

probabilistic models. In a learning approach, a Discrimination version of Expectation-Maximization (D-

EM) algorithm is proposed to use data from relevance feedback to cluster images. In image retrieval by 

relevance feedback, users label only a small ratio of images in the database and EM algorithm has been 

proven to be suitable for problems with small size of labeled data. The algorithm iterates in two steps 

until no specific improvement is achieved. In the first step, cluster centers are estimated based on the 

labeled data, and in the second step, unlabeled images are labeled using the cluster centers computed in 

the first step [9]. 

The relevance feedback problem has been also studied as an optimization problem. It is a query 

point movement approach to construct a point as the new query for next relevance feedback iteration 

such that it minimizes the distances of currently labeled images from the current query [9]. 

Clustering 

The task of a clustering algorithm is to partition a data set into subgroups such that those in each 

particular group are more similar to each other (inter-similarities) than to those of other groups (intra-

dissimilarities). A clustering algorithm can be agglomerative or divisive. An agglomerative approach 

begins with each data point as a cluster, and successively merges clusters together until a stopping 

criterion is satisfied. A divisive method begins with all data points in a single cluster and performs 

splitting until a stopping criterion is met. Stopping criteria can be defined by validation rules. A 

validation rule measures some characteristics of created clusters such as compactness and separateness. 

Compactness measures how close are the data point to each other in a cluster, and separateness measure 

how far clusters are located from each other [9]. 

5.1.7 Hierarchical clustering 

A hierarchical algorithm yields a nested grouping of data points, and similarity levels at which 

groupings change. Most hierarchical clustering algorithms are variants of the single-link, complete-link, 

and minimum-variance algorithms. These algorithms differ in the way they characterize the similarity 

between a pair of clusters. In the single-link method, the distance between two clusters is the minimum 

of the distances between all pairs of data points drawn from the two clusters (one pattern from the first 

cluster, the other from the second). 

In the complete-link algorithm, the distance between two clusters is the maximum of all pair-wise 

distances between patterns in the two clusters. In either case, two clusters are merged to form a larger 

cluster based on minimum distance criteria [9]. 

5.1.8 Partitional clustering 

A partitional clustering algorithm obtains a single partition of the data instead of a clustering structure. 

Partitional methods have advantages in applications involving large data sets for which the construction 

of a hierarchical structure is computationally prohibitive. A problem accompanying the use of a 
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partitional algorithm is the choice of the number of desired output clusters. Thus, partitional techniques 

usually produce clusters by optimizing a criterion function. In practice, the algorithm is typically run 

multiple times with different starting states, and the best configuration obtained from all of the runs is 

used as the output clustering. 

The most intuitive and frequently used criterion function in partitional clustering techniques is the 

squared error criterion, which tends to work well with isolated and compact clusters. The k-means is the 

simplest and most commonly used algorithm employing a squared error criterion. It starts with a 

random initial partition and keeps reassigning data points to clusters based on the similarity between the 

data point and the cluster centers until a convergence criterion is met. The k-means algorithm is popular 

because it is easy to implement, and its time complexity is O(n), where n is the number of data points. A 

major problem with this algorithm is that it is sensitive to the selection of the initial partition and may 

converge to a local minimum of the criterion function value if the initial partition is not properly chosen 

[9]. 

5.1.9 Nearest Neighbor Clustering 

Nearest neighbor distances can be used in clustering procedures. In an iterative procedure, data points 

are assigned to the cluster of its nearest labeled neighbor data point, if the distance to that labeled 

neighbor is below a threshold. The process continues until all data points are assigned [9]. 

Late-Fusion 

Late fusion of independent retrieval methods is one of the simplest and most widely used approaches to 

combine visual and textual information for Multimedia Image Retrieval (MIR). The approach consists 

of building several retrieval systems (i. e. independent retrieval models, hereafter IRMs) based on 

different information from the same collection of documents. At querying time, each IRM returns a list 

of documents relevant to a given query. The output of the different IRMs is combined to obtain a single 

list of ranked documents. In [49] it was considered the combination of multiple heterogeneous IRMs 

through the late fusion approach (i.e. LFHM). Heterogeneousness in IRMs has proved being important 

to improve the fusion results by providing complementary and diverse, yet redundant, lists of 

documents to the fusion; the inclusion of many IRMs contributed in the same directions as well, 

although mostly in redundancy. The lists of ranked documents are combined by assigning a score W to 

each document dj as follows: 
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Where i indexes the N available lists of documents L{1;…;N}; ψ(x;H) is the position of document x in 

ranked list H; 1a is an indicator function that takes the unit value when a is true and  (∑     
 
   ) is 

the relevance weighting for IRM i, when using hierarchical LFHM. Each list Li is the output of one of 

the IRMs we considered, these are shown in Table 1. Documents are re-ranked in descending order of 

this score, and the top-x documents are kept [49]. 
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Combining Semantic Annotations and Visual Features for Retrieval 

5.1.10  Relevance Feedback and Query Expansion 

In [46], the authors proposed a CBIR framework with integrated relevance feedback and query 

expansion, in which the semantic-based index and relevance feedback are seamlessly integrated with 

those based on low-level feature vectors. The proposed relevance feedback framework consists of a 

semantic network which links images to semantic annotations in a database, a similarity measure that 

integrates both semantic features and image features, and a machine learning algorithm to iteratively 

update the semantic network and to improve the system’s performance over time.  

The framework supports both query by keyword and query by image example through semantic 

network and low-level feature indexing. Cross-modality query expansion is supported. That is, the 

retrieved images based on keyword search are considered as the positive examples, based on which the 

query is expanded by features of these images. In this way, the system extends a keyword-based query 

into feature-based queries to expand the search range. 

For query by image example, similar procedure takes effect to extend the retrieval from feature 

space to semantic space. In this way, user input information is utilized as much as possible to improve 

the retrieval performance. More importantly, there is a progressive learning process to propagate the 

keyword annotations from the labeled images to un-labeled ones during the feedback. In this way, more 

and more images are implicitly labeled by keywords by the semantic propagation process. In addition to 

supporting keyword search, this annotation propagation process also the retrieval system accumulated 

users’ feedback information so that it will be improve performance of future retrieval requests [46]. 

5.1.11  Annotation-Based Expansion 

In [49] the authors proposed an approach intended to represent documents by considering both their 

high level (manual annotations) and low-level semantics (labels automatically assigned). It consists of 

expanding manual annotations with labels generated by automatic annotation methods. 

They segment the images using the normalized nuts algorithm and several features are extracted 

from each region. Using a subset of annotated regions and a classifier, all the regions in the segmented 

collection are automatically labeled. For each image, the generated labels are included as an expansion 

of the original annotations. The expanded annotation is considered a textual document, and then, a text-

based retrieval model is used for indexing the documents. They selected as retrieval engine a vector 

space model (VSM) with a combination of augmented-normalized term-frequency and entropy for 

indexing/weighting documents [49]. 

A knn classifier was used for generating the annotations and they improved the results of the 

annotation methods by using a Markov Random Field that uses spatial relationships between connected 

regions for maximizing the annotation coherence for each image [49]. 

Ontology-Based Methods 

Ontology can improve user understanding and bridge the semantic gap. Ontology can be described as 

the objects and their relationships to other objects. Hence general information requirements can be 

satisfied by the ontology even without exact matches to provide keywords. 

Image retrieval queries can be formalized based on the shared ontology. It is possible to design the 

query interface to use only concepts defined in the ontology. Together with the concepts, users should 

also be allowed to propose some constraints on the attributes for corresponding concepts. The system 

can then construct an XML file to specify the retrieval query. Using the formalizations for both the 

images and a retrieval query, we can compare the semantic similarity between each image and the 

user’s query [44]. 
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The Image Retrieval algorithm proposed in [37] uses a tree comparison that traverses the ontology 

classes in order to find a path that represents the “nearest neighbor” to the query. In order to allow a 

dialog between the query and the annotated files, a semantic description generator needs to be created 

[37]. The semantic description generator transforms his query into an OWL query, which determines a 

first set of images on which the Image Retrieval Algorithm can be applied. This algorithm uses a 

weightings system previously set by the user in order to fine-tune the final results in accordance to the 

user queries. The last stage consists in displaying the results [37]. The nearest neighbor matchmaking 

algorithm continues traversing back to the upper class of the ontology and matching instances until 

there are no super classes in the class hierarchy, i.e. the leaf node for the tree is reached, giving degree 

of match equal to 0 [37]. 

In [44], the authors propose a semantic similarity between images and retrieval queries by 

calculating their similarity probability. For each combined concept entity in a retrieval query, a 

satisfaction probability is introduced. This probability specifies what proportion of each combined 

concept entities in the retrieval query is satisfied in each image’s set of combined concept entities. In 

addition to the satisfaction probability, each combined concept entity in a retrieval query also has a 

weight related to it, which allows the user to express the retrieval priority for a concept. They represent 

the similarity between an image and a retrieval query using the satisfaction probability and retrieval 

weight. 

6 Current Systems and Application Areas 

Current Systems 

The most widely known image retrieval system is IBM’s QBIC (Query by Image Content) system. In 

QBIC, the user is allowed to specify certain characteristics of the image they want to find. The results 

are returned in descending order score of textual relevance to the query. Recent versions of QBIC 

contain simple automated region segmentation functionality. In other previous systems, color 

histograms have been used and proved to be helpful, although the use of such global features as a point 

of query has provided little information about how that color is distributed spatially about the image [9]. 

SIMPLICity is another system that incorporates the properties of all the segmented regions so that 

information about an image can be fully used. To segment an image, the system partitions the image 

into blocks and extracts a feature vector for each block. The k-means algorithm is used to cluster the 

feature vectors into several classes with every class corresponding to one region in the segmented 

image. Six features are used for segmentation. Three of them are color components (LUV color space), 

and the other three represent energy in high frequency bands of the wavelet transform. A significance 

credit is assigned to the regions to be used in distance function. The significant factor can be uniform 

(all regions are equally important), based on the area percentage, or location of the region [9]. 

SIMPLICity uses Integrated Region Matching (IRM) to account for all regions in two images by 

calculating the distance between them as weighted average of the distance between any two region pairs 

from the two images. By considering distance between all regions, this method tends to under-estimate 

the distance. For example, two images with large region of grass will have small distance no matter it is 

a horse or a tiger on the grass. Also, user relevance feedback is only on image level, and the system 

cannot get the information about the real interested region in the image [47]. 

Blobword is another CBIR system that is based on segmenting the image into regions and querying 

the image database using features of those regions instead of basing the query on global properties. 

Blobworld recognizes images as collections of objects that are in a spatial relationship to one another. 

Using the Expectation-Maximization algorithm to estimate the parameters of this model, the resulting 

pixel-cluster memberships provide a segmentation of the image. Once the image is segmented, features 
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of the different segments are produced, such as color and texture. While querying, the user is allowed to 

access the segments directly to determine which features of the image are important to his/her query. 

When results are returned, the user also sees the Blobworld representation of the image, which is used 

to refine the user’s query [9]. 

In the NeTra system retrieval is based on segmented image regions. The segmentation scheme 

requires user supervision for parameter tuning and segmentation corrections. Furthermore, a one-to-one 

region matching is proposed after region selection by the user. 

However, among many region based systems, including Netra and Blobworld, user can only specify 

an interested region on a mask which indicates pre-computed segmentation. The interface is not easy to 

use, since the user needs to look at both the mask and the image. It also depends highly on segmentation 

accuracy. If one object is segmented into many regions, it is difficult to correct this error. Limited user 

knowledge about the image is incorporated into the system through selecting single region [47]. 

In VisualSeek, each image is decomposed into regions of equally dominant colors. For each region, 

feature properties and spatial properties are retained for the subsequent queries. A query consists of 

finding the images that contain the most similar arrangements of similar regions. The color region 

extraction uses the back-projection technique. To start a query, the user sketches a number of regions, 

positions them on a grid, and selects a color for each region. To find the matches of a query image with 

a single region, queries on color set, region absolute location, area and spatial extent are first done 

independently. The results of these queries are intersected and from the obtained candidate set, the best 

matching images are taken by minimizing a total distance given by the weighted sum of the four 

distances mentioned. If the query image consists of a number of regions, in absolute or relative location, 

then for each region positioned in absolute location, a query like that described above is made, and for 

regions positioned by relative location individual queries on all attributes except location are performed 

[9]. 

For the intersection of all this query results, the relative spatial relations specified by the user are 

evaluated using 2D string representation 

MARS is the pioneer of CBIR systems in implementing relevance feedback techniques. Queries in 

MARS can be a combination of low-level features (color, texture, shape) and textual descriptions. There 

is a tree associated with each query. In a query tree, the leaves represent the feature vectors (the terms 

of the boolean expression defining the query) while the internal nodes correspond to boolean operators 

or more complex terms indicating a query by object. The tree is evaluated bottom-up, each internal 

node receives from each child a list of ranked images and combines these lists according to the weights 

on the parent-child links. In MARS, color is represented by a 2D histogram over the HS coordinates of 

the HSV space and the similarity distance between two color histograms is computed by histogram 

intersection. Texture is represented by two histograms, one measuring the coarseness and the other one 

the directionality of the image, and one scalar defining the contrast. In order to extract the color/texture 

layout, the image is divided into 5 × 5 sub images and for each sub image, features are extracted. The 

object in an image is segmented out in two phases. First, a k-means clustering method in the color-

texture space is applied, then the detected regions are grouped by an attraction based method. A number 

of attractor regions are defined and each region is associated with the attractor that has the largest 

attraction to it. The attraction between two regions, i and j, is defined as Fij=Mi Mj / dij 2, where Mi, Mj 

are the sizes of the two regions and dij is the Euclidean distance between the two regions in the spatial-

color-texture space. The Euclidean distance between the vector representations is used to compute the 

texture similarity between two sub-images. A weighted sum of the 5 × 5 color/texture similarities is 

used to compute the color/texture layout distance between two images. The shape of the boundary of 

the extracted object is represented by means of Fourier Descriptors. The similarity between two textures 

of the whole image is determined by a weighted sum of the Euclidean distance between contrasts and 

the histogram intersection distances of the other two components. The user can also choose a set of 

desired features from a list when querying the system [9]. 
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Photobook is another CBIR system which implements three different approaches to constructing 

image representations for querying purposes, each for a specific type of image content: faces, 2D shapes 

and texture images. The first two representations are similar in the way that they offer a description 

relative to an average of a few prototypes by using the eigenvectors of a covariance matrix as an 

orthogonal coordinate system of the image space. First a preprocessing step is done in order to 

normalize the input image for position, scale and orientation. In a texture description, an image is viewed as 

a homogeneous 2D discrete random field, which is expressed as the sum of three orthogonal components. These 

components correspond to periodicity, directionality and randomness. In creating a shape description, first a 

silhouette is extracted and a number of feature points on this are chosen (such as corners and high-curvature 

points). This feature points are then used as nodes in building a finite element model of the shape. To perform a 

query, the user selects some images from the grid of still images displayed and/or enters an annotation filter. From 

the images displayed, the user can select another query images and reiterate the search [50]. 

Application Areas 

CBIR counts with many application areas, among them are the following: 

 In Search Engine: This can be implemented in the search engine through which we can find similar 

image from the whole world. 

 Crime Prevention: Automatic face recognition systems, used by police forces. 

 Security Check: Finger print or retina scanning for access privileges 

 Medical Diagnosis: Using CBIR in a medical database of medical images to aid diagnosis by 

identifying similar past cases. 

 Intellectual Property: Trademark image registration, where a new candidate mark is compared with 

existing marks to ensure no risk of confusing property ownership.  
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7 Open Problems 

A significant problem in Content-based Image Retrieval (CBIR) systems is the gap between high-level 

semantics in human minds and low-level features computable by machines. The semantic gap continues 

to be one of the major issues, along with scalability, benchmarking and search speed.  

In current CBIR systems a large improvement has been made to represent visual content of images. 

However, the relation between image content and image information representation is currently not 

understood satisfactorily. Representations automatically generated from an image do not possess 

enough expressive power to accommodate user input when he searches for images with a specific 

content. Hence, using low-level features alone may not be effective in representing users’ feedbacks 

and in describing their intentions. 

From the representational point of view, it seems that by using spatial information, CBIR may 

automatically improve its results. But questions such as: “How to do it?” or “Which of all the possible 

relations can be useful?” are still unanswered. Also, for representing spatial relationships between 

regions, it is assumed that the regions have been segmented out of the images reliably. But in most 

cases this is not a reasonable factor, since reliable segmentation of regions poses a problem itself. 

Regarding Automatic Image Annotation, the main problem that arises is that the developed 

vocabularies cannot be complete, that is because it will not include everything a user might want to say 

about an image. 

In most of the CBIR systems, relevance feedback is provided in the form of positive and negative 

examples. However, when images or query concepts are semantically rich, it is not convenient for the 

users to transfer the degrees of relevancy they have in their minds through binary feedbacks to the 

system; therefore, the quality of the system input is reduced and learning performance plunges [9]. 

Also, the ranking methods to show the searched results are a problem to consider. 

8 Available Databases 

Some of the benchmark databases used for performing experiments related to Content-Based Image 

Retrieval are listed below: 

 PASCAL VOC databases: These databases are freely available on the PASCAL web-page1  and 

consists of several databases, five of them are fully annotated, three are partially annotated and there 

is one unannotated. 

 IAPR TC-12 dataset: The IAPR TC-12 Benchmark database consists of 20,000 still images taken 

from locations around the world and comprising an assorted cross-section of still images which 

might for example be found in a personal photo collection. It includes pictures of different sports and 

actions, photographs of people, animals, cities, landscapes and many other aspects of contemporary 

life. This data is also strongly annotated using textual descriptions of the images and various meta-

data. [36] 

 Corel database: The Corel data set consists of 5000 images from 50 Corel Stock Photo cds. Each cd 

includes 100 images on the same topic, and each image is also associated with 1-5 keywords. 

Overall there are 371 keywords in the dataset [42]. 

 Caltech-101 database: This database contains from 31 to 800 images per category. Most images are 

medium resolution, i.e., about 300 × 300 pixels. Caltech-101 is probably the most diverse object 

database available today, though it is not without shortcomings. Namely, most images feature 

relatively little clutter, and the objects are centered and occupy most of the image. In addition, a 

number of categories, such as minaret, are affected by “corner” artifacts resulting from artificial 

                                                      
1 http://www.pascal-network.org/challenges/VOC/databases.html 

http://www.pascal-network.org/challenges/VOC/databases.html
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image rotation. Though these artifacts are semantically irrelevant, they can provide stable cues 

resulting in misleadingly high recognition rates [25]. 

 Graz dataset: This dataset is characterized by high intra-class variation. This dataset has two object 

classes, bikes (373 images) and persons (460 images), and a background class (270 images). The 

image resolution is 640 × 480, and the range of scales and poses at which exemplars are presented is 

very diverse, e.g., a “person” image may show a pedestrian in the distance, a side view of a complete 

body, or just a closeup of a head [25]. 

 MPEG-7 CE-Shape-1 database: It is widely used for testing the performance of shape description 

and matching algorithms. It consists of 1400 silhouette images which are grouped into 70 classes 

with 20 objects per class [51]. 

 KIMIA99 database: Consists of 99 shapes which can be grouped into 9 classes, each consisting of 11 

objects [51]. 

 Empics database: Empics is a Nottingham-based company which is part of the Press Association 

Photo Group Company. As well as owning a huge image database in excess of 4 million annotated 

images which date back to the early 1900’s, the company processes a colossal amount of images 

each day from varying events ranging from sport to politics and entertainment. The company also 

receives annotated images from a number of partners that rely on a different photo indexing schema.  

Two datasets have been released by Microsoft Research in Cambridge. The “Database of thousands 

of weakly labeled, high-res images” contains images divided into 23 categories. Some of these are 

divided into sub-classes, such as different views of cars. The “Pixel-wise labeled image database” 

contains 591 images in which regions are manually labeled using the 23 labels. Combining the keyword 

lists results in 33 unique keywords [36]. 

9 Scientific Conferences 

ICPR 2  is the conference of the International Association for Pattern Recognition (IAPR).  

ICPR is an international forum for discussions on recent advances in the fields of Computer Vision; 

Pattern Recognition and Machine Learning; Signal, Speech, Image and Video Processing; Biometrics 

and Human Computer Interaction; Multimedia and Document Analysis, Processing and Retrieval; 

Bioinformatics and Biomedical Applications. 

CIARP3 is the Iberoamerican Congress on Pattern Recognition supported by IAPR and sponsored by 

another five PR iberoamerican societies. This is a fruitful forum for the exchange of scientific results 

and experiences, as well as the sharing of new knowledge, and the increase of the co-operation between 

research groups in pattern recognition and related areas. 

CIVR4, the ACM (Association for Computing Machinery) International Conference on Content-

based Image and Video Retrieval (CIVR) is a prominent technical conference in this field. After 5 

editions, CIVR has now become an official ACM Conference and an IAPR co-sponsored event since 

2007 in Amsterdam (thanks to the initiatives by 2007 co-chairs Marcel Worring and Nicu Sebe).  

ImageCLEF5 is the cross-language image retrieval track which is run every year as part of the Cross 

Language Evaluation Forum (CLEF). ImageCLEF has already seen participation from both academic 

and commercial research groups worldwide from communities including: Cross-Language Information 

Retrieval (CLIR), Content-Based Image Retrieval (CBIR) and user interaction. ImageCLEF was 

originally proposed by Mark Sanderson and Paul Clough from the Department of Information Studies, 

                                                      
2 http://www.icpr2010.org/ 
3 http://www.gdl.cinvestav.mx/ciarp2009/index.php 
4 http://www.iapr.org/members/newsletter/Newsletter09-02/index_files/Page361.htm 
5 http://www.imageclef.org/ 

http://www.iapr.org/
http://www.acm.org/
http://www.clef-campaign.org/
http://www.clef-campaign.org/
http://www.shef.ac.uk/is/home.html
http://www.icpr2010.org/
http://www.gdl.cinvestav.mx/ciarp2009/index.php
http://www.iapr.org/members/newsletter/Newsletter09-02/index_files/Page361.htm
http://www.imageclef.org/
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University of Sheffield. However, today ImageCLEF is organized and run voluntarily by a much larger 

number of individuals and research groups.  

VISIGRAPP6 is the International Joint Conference on Computer Vision, Imaging and Computer 

Graphics Theory and Applications. The purpose of this conference is to bring together researchers and 

practitioners on the areas of computer vision, imaging, computer graphics and Information 

Visualization, interested in both theoretical advances and applications in these fields. The VISIGRAPP 

component conferences are specialized in the following topics: GRAPP is structured along four main 

tracks, covering different aspects related to Computer Graphics, from Modeling to Rendering, including 

Animation and Interactive Environments, IMAGAPP covers theory, applications and technologies 

related to image display, color coding, medical imaging, remote sensing, business document processing, 

digital fabrication, printing and electronic devices, VISAPP has also four main tracks, namely: Image 

Formation and Processing, Image Analysis, Image Understanding and Motion, Tracking and Stereo 

Vision and IVAPP structured along several topics related to Information Visualization. 

ICIAP7 is the International Conference on Image Analysis and Processing, organized every two 

years by the Italian group of researchers affiliated to IAPR (GIRPR), with the aim to bring together 

researchers in image processing and pattern recognition from around the world. 

10 Institutions and Investigation Groups in the World 

10.1.1  Pattern Recognition and Image Processing (PRIP) Group  

The PRIP 8  is a group from the Institute of Computed Aided Automation, Vienna University of 

Technology, Austria. The main research areas of this group are Image Pyramid, 3D Vision, Video 

Analysis, Structure & Topology. The Head of this group is Walter G. Kropatsch. His major areas of 

interest are theoretical and practical research in digital image processing, pattern recognition, remote 

sensing, art history, archeology, industry, analysis of medical imagery, digital elevation models, expert 

vision systems, and image pyramids. 

10.1.2  Learning and Recognition in Vision (LEAR) 

LEAR9 is a joint team of INRIA Grenoble - RhôneAlpes and the LJK laboratory, a joint research unit of 

the Centre National de Recherche Scientifique (CNRS), the Institut National Polytechnique de Grenoble 

(INPG), the Université Joseph Fourier (UJF) and Université Pierre-Mendès-France (UPMF). LEAR's 

main focus is learning based approaches to visual object recognition and scene interpretation, 

particularly for object category detection, image retrieval, video indexing and the analysis of humans 

and their movements. The Head of the group is Cordelia Schmid. Her major areas of interest are image 

and video description, object and category recognition and machine learning. 

10.1.3  Texto+Imagenes+Aprendizaje (TIA) 

TIA10 was established on July 2006 with the goal of doing research that can help to bridge the semantic 

gap between low-level features (extracted from images) and high-level concepts (in which users are 

interested) for multimedia image retrieval.  It belongs to the Department of Computer Science from 

INAOE (National Institute for Astrophysics, Optics and Electronics), Puebla, Mexico. Their research 

interests are on automatic segmentation, automatic image annotation, content-based, text-based and 

annotation-based image retrieval and benchmarking multimedia image retrieval.  

                                                      
6 http://www.visigrapp.org/ 
7 http://www.iciap2009.org/index.jsp?page=main.jsp 
8 http://www.prip.tuwien.ac.at/research 
9 http://lear.inrialpes.fr/index.php 
10 http://ccc.inaoep.mx/~tia/index.htm 

http://www.shef.ac.uk/is/home.html
http://savvash.blogspot.com/2009/10/visigrapp-international-joint.html
http://www.inrialpes.fr/
http://www-ljk.imag.fr/
http://www.visigrapp.org/
http://www.iciap2009.org/index.jsp?page=main.jsp
http://www.prip.tuwien.ac.at/research
http://lear.inrialpes.fr/index.php
http://ccc.inaoep.mx/~tia/index.htm
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11 Conclusions 

Research in Content-Based Image Retrieval (CBIR) has been focused on image processing, low-level 

feature extraction, etc. Experiments on CBIR systems demonstrate that low-level image features cannot 

always describe high-level semantic concepts in the users’ mind.  

This report has reviewed many methods regarding Content-Based Image Retrieval, from the very 

basic image representation as visual features, to the retrievals methods to get images from the databases. 

We have identified two major approaches to add semantics to the images. One is automatic image 

annotation, which intends to endow image regions and images as a whole with text descriptions 

describing the concepts present in them. The other is by means of Relevance Feedback, where the user 

intention and evaluation is involved in the process of retrieval, by choosing the most relevant images 

according to his criterion. Nevertheless, current approaches still have drawbacks that prevent the fully 

semantic description of image content in CBIR systems. 

It is believed that CBIR systems should provide maximum support in bridging the “semantic gap” 

between low-level visual features and the richness of human semantics by including the spatial relations 

between image regions, especially the topological relations, which are shown to be invariant to a 

number of transformations. Also, by using a hierarchical model, it will be possible to add semantics at 

different levels of abstraction, making possible to pose queries with very flexible information and at 

various levels of details. 

Thus, our approach will be based on the following general tasks: 

 Represent images by characterizing the topological relations between regions in a hierarchical 

framework. Tentatively, we can use the irregular dual pyramid approach. 

 Describe regions according to their visual content by choosing a descriptor that best fit our needs. 

 Create a descriptor that takes into account both visual features and topological relations between 

regions, and define a similarity measure for computing similarities between images. 

 Perform automatic image annotation to semantically label all the regions represented by the 

hierarchical representation at each level. 

 Perform the retrieval process combining text annotations and visual features, applying relevance 

feedback to obtain better responses according to the user’s needs. 
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Annexes 

 

Annex 1: Minimum Spanning Tree Segmentation Method 

In this method, the image is transformed into an attributed graph representation G=(V,E,w), where 

vertices represent pixels and edges their neighborhood. Instead of cutting edges, the edges are added to 

connected components based on the minimum spanning tree principle. 

 
In order to decide which component to merge, a function is defined that measures the difference 

along the boundary of two components relative to a measure of differences of components’ internals 

differences. 

In the pairwise comparison of neighboring vertices, the function returns true if the external contrast 

difference between two partitions is grater that the internal contrast differences within a partition, and 

this means that a border exists between this two partitions. It returns false in the opposite case, meaning 

that the border does not exist, and thus, these partitions are merged. 

This method is able to produce a stack of graphs, for example, a hierarchy of partitions. The pyramid 

is built from bottom to top [52]. 

 


