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Abstract Spatial relations among objects and object parts play a fundamen-
tal role in the human perception and understanding of images, thus becoming
very relevant in the computational fields of object recognition, scene under-
standing and content-based image retrieval. In this work we propose a graph
matching scheme that involves color, texture and shape features along with
spatial descriptors to represent topological and orientation/directional rela-
tionships - which are obtained by means of combinatorial pyramids - in order
to identify similar objects from a database. We also suggest a method for de-
ciding which are the more useful levels in the hierarchy of segmentation for the
recognition process. Our main objective is to prove that the combination of
visual and spatial features is a promising road in order to improve the object
recognition task. We performed experiments on two well known databases,
COIL-100 and ETH-80 image sets, in order to evaluate the expressiveness of
the proposed representation. These sets introduce challenges for simple object
recognition in terms of view-point changes, and our results were comparable
or superior than other state-of-the-art methods.

Keywords object recognition · spatial relations · topological relations ·
structure matching · graph matching

1 Introduction

A variety of representations used in computer vision consist of unordered sets
of features. This is the case of the bag-of-features approach [47] and the pyra-
mid matching kernel [11], which, in general terms, compute features from
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image patches and the frequency of occurrence of the modeled features in each
image is used for classification. In these approaches, objects are usually char-
acterized by distinct appearances, textures, shapes or parts, disregarding the
spatial information existing among features and parts.

Spatial relations between objects of a scene have received much attention
in the field of image analysis and retrieval, due to the fact that they can
reveal important properties of the scene being analyzed. Moreover, it has been
stated that structural relations among image components are fundamental in
the human process of similarity comparison [28].

In general, spatial relations can be classified into three major categories
[12]: (1) Topological relations, which remain invariant under transformations
such as translation, scaling and rotating. (2) Direction (orientation) relations,
which specify the absolute or relative spatial locations of objects. (3) Metric
relations, which deal with sizes of objects or the distance between them.

Within this context, there have been some approaches which intend to
add spatial information to image descriptions by means of visual features
[13][19][24] and points of interest methods. They try to capture the spatial
distribution of visual features in the image, but they do not identify regions
and their relations. In order to solve this, the region-based approaches have
been presented. Nevertheless, there are many works related to region-based
representation of images that do not use spatial information among regions,
or they do it poorly [44]. Also, there are methods that only use direction re-
lations [37][35][30], or topological relations [18][26], and others that combine
them together [17][43][16]. Most of these representations consider that each ob-
ject is ideally identified or deals with its bounding box to compute the spatial
relation descriptors. Nevertheless, this cannot be applied for automatic image
segmentation where objects are often arbitrarily over-segmented, or the cases
where bounding boxes overlap. For the case of [43], the spatial relations are
defined for the context of sport scenes, where they model several orientation
relations but just one topological relation (overlap) is taken into account. In
[16] spatial relations are used to improve automatic image annotation, and
although several orientation relations are used, in the topological set only the
adjacent relation is employed. An attempt to express complex spatial relations
by means of elementary spatial relations is proposed by [17], and this infor-
mation is used to check semantic consistency of tasks such as segmentation.
The relationships are expressed in a qualitative way and it might be difficult
to compute similarities between them. In [8], a deformable part-based model
is proposed for object detection, where they use a spatial model that reflects
the cost of placing the center of a part at different locations relative to the
whole object. Although this approach is very interesting, the spatial relations
represented in this way are limited.

One explicit representation of spatial relations among regions is the region
adjacency graph (RAG) [4]. This defines a simple graph from a given partition
of the image, by associating one vertex to each region and creating an edge be-
tween two vertices if the associated regions are adjacent. However, the unique
notion of adjacency is too poor to describe complex spatial organization of the
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different parts of an object, and does not provide enough information to dif-
ferentiate an adjacency relationship from a contains or inside one [4]. In [34],
a visual graph model is used for scene recognition. They employ a directed
graph that can be seen as a RAG, where the vertices represent visual concepts
obtained from regular regions of the image and the edges represent only two
spatial relations: left of and top of.

Irregular graph pyramids [2] can overcome these drawbacks by using dual
graphs to determine important edges in the pyramid construction. In this case,
each level will be an extended RAG, where parallel edges and self-loops en-
code important relations between two regions (relevant parallel edges represent
several common boundaries and self-loops represent a contains relation). Be-
sides the spatial relations representation, the hierarchy of partitions provided
by the irregular pyramid is an important source of information at different
levels, that can be very helpful for tasks such as object recognition, image
annotation and retrieval, etc. Moreover, the use of hierarchical segmentation
algorithms reduces the influence of the over/under segmentation problem and
thus increases the number and the quality of the matches.

Within the context of medical image retrieval, the use of hierarchical RAGs
is proposed in [42] and [9]. They use a segmentation hierarchy to build one
graph representing regions of an image. This graph encodes adjacency relations
among nodes and hierarchical relations among different levels. Nevertheless,
the method proposed to build the hierarchy, and therefore, the underlying
graph, is too computationally expensive to be applied in general-purpose im-
ages. Another aspect to notice is that the contribution of the spatial relations
in the graph matching scheme is reduced to the use of very simple relations
(adjacency and hierarchy).

One of the contributions of this work is the proposal of a spatial descriptor
which is easy to build, store and manipulate, and can be employed to explicitly
represent many possible spatial configurations between pairs of image regions,
taking into account several basic orientation and topological relationships.
This spatial descriptor is used to label the edges of the irregular pyramid’s
graphs.

Using image segmentation for image recognition and classification purposes
is useful, since it may provide precise localization of regions and objects in a
scene, but even for images where the same object is shown, segmented regions
might be significantly different due to varied object’s directions and lighting
conditions. We believe that using a hierarchy of partitions may help to over-
come this problem, but also the use of spatial relations will play an important
role. For this reason, given a segmentation hierarchy of an image, we decided
to use several levels (and their underlying graphs) in the representation, in
contrast to [9], which combines all the levels in a single graph.

The present work is an extension of our previous approach presented in
[29]. In this paper we use the combinatorial pyramid framework [21] to obtain
a hierarchy of partitions from an image and to determine the spatial relations
between the regions found at each level. We introduce a representation to
compute a spatial relations descriptor, taking into account topological and
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orientation relations, and a similarity measure for this descriptor is proposed.
We describe a new graph matching scheme which combines visual, spatial
and shape information in order to identify simple objects from a database,
and we suggest a method for deciding which are the more useful levels in the
segmentation hierarchy for the recognition process.

Section 2 of this paper explores the main characteristics of irregular pyra-
mids. Section 3 explains the visual representation used for describing the im-
ages and the similarity measures selected for comparison. In Section 4 we
present our novel spatial descriptor and a way for computing the similarity
using this representation. Section 5 describes the proposed graph matching
scheme and the selection of the pyramid levels to be used in it. Experimental
results are presented in Section 6 and Section 7 concludes the paper.

2 Irregular Pyramids Overview

Irregular graph pyramids are formed by a region adjacency graph (RAG) per
level. In these graphs G = (V, E) the vertices (V ) represent the cells or re-
gions, and the edges (E) represent the neighborhood relations of the regions.
When we build an irregular pyramid from an image, each level represents a
partition of the pixel set into cells, i.e. connected subsets of pixels. On the base
level (level 0) of the image pyramid, the cells represent single pixels and the
neighborhood of the cells is defined by the 4-connectivity of the pixels. A cell
on level k+1 (parent) is a union of neighboring cells on level k (children) [14].
Descriptions of the regions and their relationships can be stored in attributes
attached to both vertices and edges (i.e. color, size, gray values of the pixels,
a weight measuring the difference between the two end points). The irregular
graph pyramid is then a stack of successively reduced graphs (being the base
level the high resolution input image). Each graph is built from the graph be-
low by selecting a set of vertices named surviving vertices and mapping each
non surviving vertex to a surviving one. In this way, each surviving vertex rep-
resents all the non surviving vertices mapped to it and becomes their father
[22]. This parent-child relationship may be iterated down to the base level and
the set of children of one vertex in the base level is named its receptive field
(RF). The steps for building the pyramid are roughly depicted in Figure 1.

The selection of the surviving vertices (white vertices in Figure 1c) can be
performed in different ways. One of them is to find a maximal independent
set (MIS) which fulfills the constraints that each non-surviving vertex must
be adjacent to at least a surviving one, and that two adjacent vertices cannot
survive. More information regarding the selection of surviving vertices can be
found in [2][23].

Using simple graphs (graphs without multiple edges and self-loops) as the
levels of the pyramid, the encoding of the spatial structure of the image might
not be accurate. The lack of self-loops does not allow to differentiate inclusion
from adjacency relationship. The lack of parallel edges prevent from having
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Fig. 1 Building an irregular pyramid from an image. a) original image, b) base level graph
(G0), c) white nodes represent the nodes that will survive to the next level, d) contraction
kernels (CK) for each surviving node (the arrows indicate the surviving node corresponding
to each non-surviving node), e) level G1 built from G0, f) level G2 built from G1. In g) the
level hierarchy is shown (levels G0, G1 and G0 are presented from bottom to top)

information regarding multiple common boundaries between two adjacent re-
gions.

To overcome these problems, dual graph pyramids are introduced. In order
to correctly represent the embedding of the graph in the image plane, the dual
graph G = (V , E) of the RAG is additionally stored at each level. The RAG
is also replaced by a RAG+ (enhanced region adjacency graph), which is a
RAG that includes non-redundant self-loops or parallel edges [22].

Within the dual graph pyramid framework the reduction process is per-
formed by a set of edge contractions. The edge contraction collapses two ad-
jacent vertices into one vertex and removes the edge. This set is called a
Contraction Kernel (CK) [4]. Figure 1d) shows an example of the contraction
kernels in one level of the pyramid. The contraction of the graph reduces the
number of vertices while maintaining the connections to other vertices. As a
consequence, the decimation of a graph by a CK may induce the creation of
some redundant edges. The contraction process must follow two steps [2]:

1. A set of edge contractions on GK encoded by the CK. The dual of the
contracted graph GK+1 is computed from GK by removing the dual of the
edges contained in the CK.

2. The removal of redundant edges encoded by a CK applied on the dual
graph. The edge contractions performed in the dual graph has to be fol-
lowed by edge removals in the initial one in order to preserve the duality
between the reduced graphs.

The spatial relations encoded by the pyramid can be seen in Figure 2. At a
given level of the pyramid, each edge represents an adjacency relation between
two vertices (regions). In Figure 2a this is represented by the edges connecting
region A with region D, and region D with region B. Also, it is possible to have
parallel edges between two vertices, representing multiple adjacency, which is
the case of region A with region B. The inclusion relation is represented by a
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simple edge denoting adjacency and a self-loop, surrounding the region that
is inside. This configuration can be seen between region A and region C.

One of the drawbacks of the irregular pyramid codification is that it can
encode the presence of an inclusion relationship, but using graphs it is not
possible to know which region is inside and which one is outside just by having
a self-loop [4]. This can be seen in Figure 2b, where the self-loop can be either
surrounding region A or region C.

A

B

C

D

A

B
C

A B C

A B C

a b

Fig. 2 Spatial relations encoding within the irregular pyramid framework. a) Represen-
tation of simple adjacency, multiple adjacency and contains/inside relationship. b)Example
case where the encoding of the inclusion relationship can not distinguish which region is
outside and which one is inside.

Combinatorial pyramids [4] are introduced in order to properly characterize
the inclusion relationship. In this case, the edges orientation around a vertex
is needed. A Combinatorial Map (CM) may be understood as a planar graph
encoding explicitly the orientation of edges called darts, each dart having its
origin at the vertex it is attached to. A CM can be defined as G = (D, σ, α),
where D is a set of darts (an edge connecting two vertices is composed of
two darts d1 and d2, each dart belonging to only one vertex), α is the reverse
permutation which maps d1 to d2 and d2 to d1 and σ is the successor permu-
tation which encodes the sequence of darts encountered when moving around
a vertex [4]. This can be seen in Figure 3.

The dual of a CM is defined by G = (D, ϕ, α) with ϕ = σ ◦α. The cycles of
the permutation ϕ encode the set of darts encountered when turning around
a face of G [4].

A combinatorial pyramid is then a stack of successively reduced combi-
natorial maps, having the advantages that each CM explicitly encodes the
orientation of darts around each vertex and the dual is defined on the same
set of darts by the permutations ϕ, therefore, only one data structure has to
be encoded and maintained along the pyramid [3].
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Fig. 3 Equivalence between a graph and a combinatorial map. a) Example graph, b)
combinatorial map equivalent to the graph in a, c) combinatorial map equivalent to the
graph in Figure 1e. In c, darts are represented by numbered segments, σ by gray arrows
(example σ(1)=-5) and two darts linked by α are drawn consecutively and share the same
number, but with different signs (example α(1)=-1).

3 Visual Description of Regions

Beyond using combinatorial pyramids to obtain a stack of image segmentations
at different levels, this structure can be used to store and represent important
information regarding images. If we properly characterize each region and its
relationships with its neighborhood, it could be exploited for other tasks such
as object recognition.

Every node in the combinatorial pyramid represents a region in the image.
These regions can be characterized using low-level features, so they can suc-
cessfully represent distinctive parts of the objects. There is a large number of
image features that have been proposed in the literature to accomplish this.
In the present work we use color and texture to represent image segments,
but other features can be included in the future. Shape features are used to
represent a group of image segments.

Color features are widely used for object recognition and image retrieval.
That’s why one of the visual features selected to represent these regions is
their color histogram in RGB space. The three dimensional values of the RGB
color space make the discriminative power of this representation superior with
respect to the one dimensional values of the grayscale images. For this reason,
we built a histogram with 16 bins per channel, yielding a total of 48 bins.

For texture representation we chose the local binary patterns (LBP) his-
togram of regions [40]. The LBP operator codes a local window pattern from
a texture patch, and its histogram is often treated as texture feature in clas-
sification problems. Among the advantages of LBP are its invariance to any
monotonic change in gray level and its computational simplicity. Its efficiency
originates from the detection of different micro patterns (edges, points, con-
stant areas etc.). Furthermore, some studies have shown that local binary
patterns can produce good texture discrimination [41][15]. We extract the lo-
cal binary patterns of a local circular window to represent the feature of the
center pixel and the LBP distribution of one region is approximated by a LBP
histogram.
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The structure of the combinatorial pyramid is perfect for computing statis-
tical features, such as histograms. The computation of each region’s histogram
can be performed during the construction of the pyramid very easily, updating
each level from the data of the level below. Given an image obtained by com-
puting the LBPs from the original image, it is possible to update each region’s
histogram at each level by using the following equation:

H(R)j =

n∑

i=1

H(i)j−1 (1)

Where n is the number of regions merged into the current region R, and j

is the level of the pyramid. The same applies for the construction of the color
histograms.

Shape is a very important feature when it comes to recognizing objects.
Two objects may have similar colors and textures, and the only way to differen-
tiate them is by analyzing their shape. Let’s take for example, the comparison
between apples and pears, where the main difference between these two object
categories is given by their shapes.

In this case, for representing shapes, we chose the Legendre moments [5].
According to the comparison performed by [6], the Legendre moments show
very good results for handwritten character recognition. They also have been
successfully used for object classification [1] and image retrieval [36]. The Leg-
endre moments for a (N X N) digital image is given by [5]:

Lpq =

N−1∑

m=0

N−1∑

n=0

Pp(mN )Pq(nN )f(m, n), (2)

where p and q are integers between (0,∞), being (p + q) the order of the
Legendre moment computed, Pp and Pq are the Legendre polynomials, and

mN =
2m − N + 1

N − 1
(3)

The shape descriptor is then the concatenation of the Legendre moments
into a single vector.

3.1 Computing visual similarity

Once the visual features to be used are defined, one important step is to select
the similarity measures for them. Since our main contribution is not in the
topic of visual similarity, we chose two well-known similarity measures for our
features.

The LBP histograms and the color histograms of the pyramid regions are
normalized, since the different sizes of regions produce uneven histograms.
For histogram similarity we use the Bhattacharyya distance, which is then
transformed into a similarity measure.
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For combining the similarity values obtained for the LBP histograms and
the color histograms, we add two weights, ωC and ωH , in order to give different
importance to color and texture, and to have a final value of visual similarity
between two regions r1 and r2:

SV (r1, r2) = ωC ∗ SC(r1, r2) + ωH ∗ SH(r1, r2), where SV (r1, r2) ∈ [0, 1]
(4)

SC and SH are the color histogram similarity and LBP histogram similarity
respectively.

For comparing the Legendre moments vectors we use Euclidean distance,
which gives a dissimilarity value between the vectors. Nevertheless, shape is not
included in the previous combination, because SV is intended to represent the
similarity between two regions of two different objects. Shape (dis)similarity
must be computed over the whole object silhouette, that’s why the inclusion of
this dissimilarity in the comparison process will be explained in further detail
in Section 5.

4 Spatial Relations in 2D Images

There have been several models proposed for representing spatial relations
among regions. For topological relations, the 4IM and 9IM [7] are well known.
In these models, and for the case of 2D images, eight topological relations are
described: disjoint, contains, inside, equal, meet, covers, covered by and overlap.
The main drawback of these models is their inability to represent complex
topological relations (i.e. when two regions have more than one boundary in
common).

For the case of 2D images, eight relations are unnecessary since some of
them will never be present (i.e the overlap relation). In 2D images, we certainly
can have occlusion (two objects overlapped), but at the time of segmentation
we will be unable to establish a difference between this and a simple adjacency
relation, since we will have only a boundary in common. We selected from these
eight relations, three that will be representative for 2D images. These relations
can be seen in Figure 4.

A disjoint B A touching B A overlap B A equal B A contains B A covers B A inside B A covered by B 

A 

B 

A 

B 

B A B A A 
A 

 B 

A 

 B 

B 

 A 

B 

 A 

A adjacent to B A contains B A inside B 

Fig. 4 Topological relations between 2D regions and the selection for 2D images.
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Although these relationships are implicitly encoded in the local neighbor-
hood of the combinatorial pyramid, retrieving them is not always an easy task
and in some cases it may involve several steps [4]. The graphs in the irregular
pyramid are not simple, i.e they contain parallel edges and self-loops, therefore,
performing matching operations on this kind of structures is not straightfor-
ward. This is why we chose to create a spatial descriptor that explicitly encodes
the spatial configuration between two regions.

We consider that orientation relations between regions can also provide
important information, therefore the new spatial descriptor should take both
types of relations into account. Accordingly, we decided to use the relations
left of, right of, top of, bottom of, horizontally aligned and vertically aligned,
somehow similar to the order relations proposed in [16]. These relations will
be computed based on the spatial disposition of the centroids for every pair
of regions.

4.1 Spatial Descriptor

Our spatial description proposal consists of a binary vector that will encode
both topological and orientation relations. The vector will have 9 elements,
each representing one basic spatial relation, as shown in Figure 5. For every
position, we put a 1 if the two regions share that spatial relation and 0 oth-
erwise. These basic relations are split into three categories: (1) Topological
relations - adjacent, contains and inside, (2) Alignment relations - horizon-
tally aligned and vertically aligned, (3) Orientation relations - left of, right of,
top of and bottom of.

H V L R T B A C I

H – Horizontally aligned L – Left of T – Top of A – Adjacent

V – Vertically aligned R – Right of B – Bottom of C – Contains 

I – Inside

Fig. 5 Spatial descriptor combining topological and orientation relations.

We also store, for every pair of related regions, the number of common
boundary segments, which will be a descriptor of the adjacency between them.

For computational purposes, each value of the descriptor will be stored as
bits. This leads us to a 9 bit (2 bytes with 7 unused bits) representation, which
is very simple, compact and easy to use.

4.2 Spatial Relationship Similarity

In order to compute the similarity between two spatial relations, we need to
find out how many basic relations they share, this is why we chose a similar-
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ity measure that can be used with binary vectors. We are proposing to use
the Sokal-Michener measure [38] since it treats positive and negative matches
equally. It has shown good performance compared with other measures re-
ported in [46] and it is very easy to compute. Let X and Y be binary vectors
of the same length d and let Sij (i, j ∈ {0, 1}) denote the number of occur-
rences of matches with i in X and j in Y at the corresponding positions.
The Sokal-Michener measure for two spatial descriptors sp1 and sp2, which
annotate edges e1 and e2 respectively, can be computed as:

SSD(sp1, sp2) =
S11 + S00

d
(5)

The term S11 denotes the positive matches (i.e. the number of 1 bits that
matched between X and Y ) and the term S00 denotes the negative matches
(i.e. the number of 0 bits that matched between X and Y ).

When computing the spatial similarity between two pairs of regions, we
consider that all the basic relations should not contribute in the same way
to the final result. We think that topological relations are more reliable than
the others in the present case, since they are invariant to transformations
such as scaling, translating and rotation. Therefore, they must have a bigger
weight in the decision of whether two spatial relations are similar or not. In
the same way, we consider the alignment relations to be more important than
the orientation relations. For this reason we decided to use three weights ωT ,
ωA and ωO for topological, alignment and orientation relations respectively,
following the criteria ωT > ωA > ωO . These weights will be applied to every
element’s match/mismatch in the computation of the Sokal-Michener measure,
using the weight corresponding to the basic spatial relation represented by the
element in each case.

5 Matching strategy

In order to take into account the spatial relations between object’s parts, we
chose to implement a graph matching algorithm, since this makes it possible to
compute similarity between images. In the present case, we’re not interested
in finding the similarity between two images, but in finding similarities be-
tween the objects of each image, so we are talking about a subgraph matching
problem.

One important advantage of using irregular pyramids for this process is
that they provide a hierarchy of partitions of one image. Having several seg-
mentation levels instead of only one can be very useful in the recognition pro-
cess, since different partitions of the same image will yield diverse and useful
information. But we still have the problem that not all the pyramid levels will
make such contribution, since we can find levels so over-segmented or under-
segmented, that they will not provide helpful representations. These levels will
be a burden in the matching process, making it slower without adding mean-
ingful information. Therefore, it would be desirable to dismiss the unwanted
partitions.
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5.1 Selecting the Pyramid Levels for the Matching Process

Having the entire hierarchy of partitions, it is easy for a person to manually
select one level or several levels that one might find ”better” segmented ac-
cording to some criteria. Problems emerge when we want to do the same thing
automatically. In this case we confront issues like which level(s) of the pyramid
we should use or if we were to select one level, can we be sure that the main
object parts are well represented in such partition?

For this reason, we decided to evaluate the levels of the pyramid in order
to decide which levels are the best ones (according to the measure defined).
In [39], a method for simplifying segmentation hierarchies is proposed. The
selection of the most semantic levels in the hierarchy is done by using spectral
graph theory, which in our case is not applicable, since our graphs contain
multiple edges to represent inclusion and multiple adjacency.

We believe that image edges can be an important criteria to evaluate the
partitions. When a partition does not preserve all relevant edges in the image,
it usually means that several regions from different objects or background were
merged into one single region, thus losing very useful information. Moreover,
even a partition that segments the object as a whole silhouette may not be the
best one, since we are more interested in finding object parts and their rela-
tions, in order to provide discriminative information to the object recognition
algorithm.

Since we do not have apriori knowledge regarding the image, we choose a
Canny filter to determine relevant edges, and use the resulting edges mask as
reference to evaluate the segmentation at each level. The Canny edge detector
presupposes a notion of continuity by using thresholding with hysteresis for the
detection. In general, this edge detector shows good performance and is very
fast, although it presents some drawbacks such as three parameters to adjust
and the Y-junctions problem. In the future, more sophisticated edge detectors
can be tested to improve this process. Before applying the Canny detector,
the images are smoothed to reduce the influence of noise. For evaluating each
partition of the pyramid we propose the following measures:

BG =
|P ∩ R|

|R|
(6)

BB = 1 −
|P\R|

n
(7)

where P is the set of all edge pixels from the partition being evaluated, R

is the set of edge pixels in the Canny mask image and n is the total number of
pixels in the image. |.| is the cardinality of set. Measure 6 evaluates how well
the partition edges matched those of the Canny mask, and measure 7 evaluates
how many border pixels in the partition are not present in the Canny mask.
Thus, measure 6 tends to favor over-segmented partitions while measure 7 does
the opposite, and penalizes partitions with more edges than those present in



Simple object recognition using spatial relations and visual features 13

the mask, so these measures are combined into a global measure B using two
weights ωG and ωB.

B = ωG ∗ BG + ωB ∗ BB (8)

Some sample results of the level evaluation using the B measure can be
seen in Figure 6. In this example, the 9th level of the hierarchy obtained the
best evaluation. We can see in level 10 that some edges of Lena’s face were
lost, thus mixing a portion of the face with a background region. Also some
edges of the background objects were not kept in this partition. This is why
the B value starts to decrease from level 10 onwards.

Edge mask L5 B=0.596 L6 B=0.605 L7 B=0.612 L8 B=0.617

L9 B=0.623 L10 B=0.611 L11 B=0.606 L12 B=0.586 L13 B=0.567

Fig. 6 Example level evaluation of the pyramid.

5.2 Matching Process

We use a greedy algorithm to find matchings between structures and, in order
to prune the search space,we use the visual similarity measure (Eq. 4) and the
spatial similarity measure (Eq. 5) proposed previously to discriminate nodes
and edges that are too different to be taken into account. Also, in order to
reduce the matching time, we choose for the comparison the best three levels
of each pyramid (according to Eq. 8).

In a nutshell, the algorithm takes an input graph G (which in this case
is the best level evaluated in the pyramid) that must be compared with a
number of selected levels of some pyramid. For each graph (selected level) in
the pyramid we find all the similar structures to the input graph. We take
every node in the input graph and we compare it to each node in a level of
the pyramid, and if they are visually similar, according to equation 4, then we
try to expand the structure - in a greedy way - by testing the node’s edges
using the weighted SSD measure in equation 5. If they are spatially similar,
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we repeat the process for every node they connect. This matching strategy is
based on the algorithm proposed in [20].

Once we have a substructure T that matched with the input graph G, the
corresponding matching nodes (representing regions) {t1, t2 .. tn} and {g1, g2

.. gn}, and the corresponding matching edges (representing spatial relations)
{r1, r2 .. rm} and {e1, e2 .. em}, we compute an overall visual similarity value
as:

V S(T, G) =

n∑

i=1

SV (ti, gi) (9)

and an overall spatial similarity value as:

SS(T, G) =

m∑

i=1

SSD(ri, ei) (10)

The contour associated with substructure T , C(T ), is given by:

C(T ) = C(

n⋃

i=0

RF (ti)) (11)

where C(·) is the set of pixels belonging to the boundary of the correspond-
ing image region and RF (ti) is the receptive field of the node ti (See Section
2).

The Legendre moments vector of this contour is compared with the cor-
responding vector of the input graph’s contour, as explained in Section 3,
resulting in the shape distance ShD(T, G).

Having these three measures, the overall similarity value between T and G

is given by:

S(T, G) =
V S(T, G) ∗ SS(T, G)

ShD(T, G)
(12)

The structure with the highest S value will be the best match for the input
graph. This matching strategy is roughly depicted in Figure 7.

Analyzing the time complexity of this algorithm, we find that testing ev-
ery vertex of one graph against all vertices in the other graph takes O(n2)
operations, where n is the number of vertices in one image graph. Once we are
standing in any arbitrary pair of vertices, the substructure expansion between
them is performed in O(n2) operations, since the maximum vertex degree is
n−1, and we don’t visit twice a vertex or edge that has already been matched
in a given expansion iteration (the similarities between edges are computed
only once and stored for future iterations). This gives an overall time com-
plexity of O(n4). Nevertheless, this time complexity is given for the worst case
scenario, which is very unlikely to happen. In fact, the pruning performed with
the visual and spatial similarity measures plays a crucial role in the perfor-
mance of the algorithm. We ran some empirical tests to evaluate how much
these measures are able to prune the search space and we obtained the results
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Structure 

Matching 

Process 

Target image, 

segmentation mask and 

selected sub-graph Image with its irregular 

pyramid to be classified 

0 1 0 0 1 0 1 0 0 

0 1 0 0 0 1 1 0 0 

. . . . .  

Spatial descriptors Best sub-graph match with its 

shape 

Fig. 7 Sub-structure matching process.

presented in Table 1. The test was performed for the case where random im-
ages were compared (first column), where only similar images were compared
(second column) and where only dissimilar images were compared (third col-
umn). The spatial pruning is performed over the filtered output of the visual
pruning. Logically, the pruning for similar images is smaller than the pruning
for dissimilar ones, since it is expected for similar images to find more match-
ings. This analysis gives the notion that, although the theoretical complexity
might seem high, we are able to prune approximately 96% of the possible
branches involved in the expansion process.

Table 1 Evaluating how much the visual and spatial measures can prune the search space.

random images similar images dissimilar images

Spatial pruning 16.3% 9.4% 52.4%

Visual pruning 97.7% 93.5% 99.8%

Total pruning 96.5% 91.3% 99.7%

Since image segmentation is crucial for our method, it is also important to
be aware of the disadvantages that it may introduce. In the segmentation step
(performed during the construction of the pyramid), even for images where the
same object is shown, segmented regions might be significantly different due
to varied object’s directions and lighting conditions. Consequently, pyramids
of graphs are different and it may seem difficult to appropriately calculate
similarities. Nevertheless, the use of the level hierarchy helps find levels where
partitions are relatively similar. By computing similarity through the regions in
each level and their spatial relationships, it is possible to overcome the problem
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of lighting or viewing direction variations, since the proposed matching scheme
allows to obtain partial matchings, and is flexible to slight variations of color
and texture of the regions being compared. Take for example the apples shown
in Figure 7. Although the apple is a whole object it is represented by several
nodes, because it is not completely homogeneous. Therefore, patches of the
apple where the color/texture is different, due to illumination effects or because
of the nature of the object itself, are represented by different nodes that will
encode the features of each patch. The next time we find an apple with a similar
distribution, in different positions, we will be able to match them using this
strategy.

The experiments described in Section 6 aim to test the robustness of this
approach under such variations.

6 Experiments Description and Results

The Pascal VOC Challenges1are among the most recognized benchmarks to
test object detection and classification algorithms, and are widely acknowl-
edged as difficult testbeds for these tasks. The goal of these challenges is to
recognize objects from a number of visual object classes in realistic scenes (i.e.
not pre-segmented objects). Nevertheless, our method focuses on the recog-
nition of simple objects (which in the future may be extended to detection
tasks, but is not the main goal of the present work), therefore we rather test
its performance using simple object databases, that introduce challenges in
terms of object viewpoints variations.

We chose two well known databases: COIL-100 [31] and ETH-80 [25] im-
age sets. Both databases contain images of simple objects taken from different
viewpoints. We also count with ground truth segmentation masks that pre-
cisely delimit the object in each image.

For both databases, the experiment setup is the same. Having the training
and testing sets defined, the images of the training set are represented by a
single graph, which belongs to the best segmented level (according to Eq. 8) of
each pyramid. For selecting the sub-graph that will represent each object, we
used the segmentation mask and we get all the regions (nodes) that are totally
inside of this mask. The test images are represented by the whole pyramid,
but in the matching process only the best three evaluated levels are involved.

The combinatorial pyramids of these images have an average of 16 levels.
The base level contains 16385 nodes and 33020 edges, while the uppermost
level usually has 2 nodes and 1 edge. In most cases, the level selected by the
evaluation process for representing the database images has between 40 and
50 nodes, and about 130 edges.

The main goal of the experiment is to recognize similar objects in the
database and, to accomplish that, we find the nearest neighbor of each example
image among the images in the database. We consider a positive match if the
nearest neighbor of the example image belongs to its category.

1 http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2010/
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6.1 Weights Computation

For this experiment, the weights involved in the different measures previously
presented were set empirically. For computing the visual similarity in Eq. 4,
we considered that color and texture should contribute equally to the final
result, thus we decided that ωC = ωH = 0.5. In the tested images, the texture
patterns were not relevant enough to think that texture should have bigger
weight than color. In the same way, in many cases, color is not the most
prominent difference between images, therefore it should not have a bigger
weight than texture. It is the balance between them what makes the greater
discrimination.

Other parameters to tune are the weights involved in the spatial similarity
computation (ωT - for topological relations, ωA - for alignment relations and
ωO for orientation relations). We tried to model how the human observers
evaluate the similarity between two spatial relations. We prepared a set of
visual configuration of binary spatial relations. An example of this can be seen
in Figure 8.

X A B C D

Fig. 8 Example relations used to test how humans perceive spatial similarity. According
to our model, the relation of the black region with respect to the white region in each
case is described as: Relation X - Horizontally aligned, Left of, Adjacent; Relation A -
Horizontally aligned, Left of; Relation B - Vertical aligned, Top of, Adjacent; Relation C -
Left of, Adjacent; Relation D - Contains.

The human observers were asked to perform a ranking of similarities among
relations A, B, C, and D with respect to the spatial relation X. In general, we
found that people picked relations C and B more similar to relation X. Note
for relation B, that the orientation and alignment relations are completely
different to X. Nevertheless, the common topological relation (adjacency) has
a bigger effect to evaluate the spatial similarity by the human observers. Most
humans have ranked the relation D in the last position because the topological
relation is different. Relation A is located often in penultimate place even
though X and A share similar orientation and alignment relations, but the
topological relation is different. Following this kind of reasoning, we assigned
a higher weight to the topological relations over the alignment and orientation
relations. We tested several weight configurations until the output ranking
of the spatial similarity measure was consistent with the human perception.
Finally, the three weights were set as ωT = 4, ωA = 2 and ωO = 1.

For the measures used to evaluate the pyramid levels (Eq. 8), we performed
several tests using an image set that contained human-made ground-truth
segmentations of them. We tested how well the best level evaluated by the
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B measure matched the ground-truth boundaries, and we selected the weight
configuration that yielded better results in this sense. The weights were set to
ωG = 0.4 and ωB = 0.6, which indicates that we are trying to avoid mostly
over-segmentation.

6.2 COIL-100 Image Set

We performed one experiment in the Columbia Object Image Library (COIL-
100) image set [31], which is a database of color images of 100 objects. These
images were taken at pose intervals of 5 degrees along one axis of rotation,
yielding 72 poses per object. In Figure 9 some examples are shown.

Fig. 9 Example images from the COIL-100 Image Set database.

For this experiment we took 25 objects randomly selected. We extracted
11% of the images corresponding to these objects to build the training set and
the remaining images were used as testing set. In this case, the experiments
correspond to object identification. We compared our results with other meth-
ods presented in the literature and these have been summarized in Table 2.
The first column of this table shows the algorithm name (or some alias that
we used to name it), third and fourth columns present the number of train-
ing or testing images used in the experiments respectively. The fifth column
shows whether or not the algorithm uses spatial relations and the last column
exhibits the recognition rates obtained in each case.

Table 2 Global recognition accuracy on the COIL-100 database

Algorithm Year Training
(views/object)

Testing
(views/object)

Spatial
Relations

Recognition
Rate

DTROD-AdaBoost [45] 2006 4 68 84.5 %

RSW+Boosting [27] 2005 1 71 89.2 %

Sequential Patterns [30] 2008 8 64 X 89.8 %

Proposed method 2011 8 64 X 91.6 %

LAF [33] 2002 8 64 99.4 %

As it can be seen in Table 2 our method performs slightly better than
the others presented, except for the LAF (Local Affine Frames) algorithm [33]
which was specifically designed to deal with severe view changes of the same
object, which makes it a good method for object identification, but probably
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not that good under generalization. However, taking into account the sim-
ple descriptors employed for representing regions, it is a good sign that we
were able to obtain results comparable to the other methods. In [30], spatial
relations are used in the form of sequential patterns, where foci-of-interest
(FOI) present in the images are concatenated through paths extracted from
a complete graph of the FOIs. Directional relations between these FOIs are
introduced in the sequential patterns that represent images. Although our
algorithm obtained a better score than [30], taking into account that the vi-
sual features employed in their approach are more sophisticated than ours, we
believe that if we use more robust features to describe regions probably our
results can be improved.

6.3 ETH-80 Image Set

The second experiment was performed on the ETH-80 Image Set database
[25] which contains 80 objects from 8 categories (apples, cars, cows, cups,
dogs, horses, pears and tomatoes). Each object is represented by 41 different
views yielding a total of 3280 images (See Figure 10). This database is more
challenging than the COIL-100 database in the sense of the viewpoint diversity.

Fig. 10 Example images from the ETH-80 Image Set database.

For this experiment we split up the database, leaving 24% of the images in
the database and the remaining 76% were used as the examples to be classified.
The goal of this experiment is to categorize each object.

We compared our results with those obtained in [32]. They proposed a
collaborative ensemble learning model where they constructed four types of
ensemble classifiers (L2 , L3 , L4 and L5) by integrating two, three, four and
five base learners respectively. We compared our method with the L5 ensemble
classifier, which showed the best results.

The comparison result regarding the recognition accuracy for each category
can be seen in Figure 11.

According to these results, our algorithm outperforms L5 in the recogni-
tion of apples, cups, tomatoes and cows. The remaining categories did not
show improvements in the recognition accuracy compared to the L5 ensemble
classifier, although pears got very close. This shows that our method is better
for discriminating objects with obvious differences in appearance and shape,
and is worse with the opposite situation, which is the case of dogs and horses.

The resulting confusion matrix for the proposed method can be seen in Ta-
ble 3. It shows that the most relevant misclassification problems occur within
objects of the same type, for instance, animals (dogs, cows and horses), which
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Fig. 11 Recognition accuracy for the proposed method compared with other reported meth-
ods in the ETH-80 dataset.

in several cases present similar texture, color and shape. Our method makes a
better differentiation between apples and tomatoes, that share a very similar
shape and color, but different textures. It also makes a good division between
apples and pears, that share similar color and texture, but different shapes.

Table 3 Confusion matrix of the experiment performed in the ETH-80 dataset

apple car cow cup dog horse pear tomato

apple 305 0 0 0 0 1 0 4 98.4%

car 1 276 17 5 5 1 1 4 89.0%

cow 2 9 270 1 4 22 2 0 87.1%

cup 1 1 0 308 0 0 0 0 99.4%

dog 5 7 45 2 215 30 6 0 69.4%

horse 3 6 51 4 29 217 0 0 70.0%

pear 25 1 2 0 0 0 282 0 91.0%

tomato 0 0 0 0 0 0 0 310 100%

89.2% 92.0% 70.1% 96.3% 85.0% 80.1% 97.0% 97.5% 88.0%

We also compared these results with other methods in terms of overall
recognition rates. This comparison can be seen in Table 4.

Table 4 Global recognition accuracy in the ETH-80 dataset

DTROD-
AdaBoost [45]

RSW+Boosting
[27]

Pyramid match
kernel [10]

L5 ensemble
classifier [32]

Proposed
method

76.0% 79.6% 82.0% 87.2% 88.0%

Again, our method slightly outperforms the others. Nevertheless, given
the small difference compared to other methods, we venture to say that the
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spatial relations are not enough to discriminate between objects, although it
can provide important cues.

6.4 Assessing the role of spatial relations within our approach

In order to assess the relevance of the spatial relations in our approach, we
decided to make an additional experiment where the spatial relations are not
taken into consideration for the matching process.

In this case, given two images having the proposed representation, we find
similarities between each region of one image against every region in the other
one, only using the visual similarity measure. An N x M matrix is created,
where N is the number of regions in the first image and M is the number
of regions in the second one, and the similarity between each pair of regions
is stored. After this step, we use the Hungarian Algorithm to find the best
matching configuration among the regions, disregarding this way all the spatial
information between them. After the matching configuration is found, we sum
up all the similarity values of the regions matched, as depicted in Equation 9
thus obtaining the global V S(T, G) value for the images. The image having
the highest score is considered to be the best match for the input image.

Using this approach, the first thing to notice is that the matched regions
between two images are usually disconnected, as it can be seen in Figure 12.
Therefore, finding the matched regions contour using Equation 11 and using
the shape distance ShD(T, G) does not seem to be a good idea in this case.
Nevertheless, in order to be consistent with our original approach, we ran
another experiment using the shape information extracted.

Fig. 12 Example of misclassified images using only visual similarity. In the top row the
input images appear , and the bottom row shows the best match found in the database in
each case. Even columns show the matched regions between the images, where the matches
can be recognized by their color. (Best seen in color)

The results over the ETH-80 image set can be seen in Table 5. As it can be
noticed, the results obtained without using spatial relations are far worse than
those that use them. When the shape measure is introduced in the experiment,
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the results slightly improve but are still very distant from being good or close
to the original approach.

Table 5 Comparison of the results obtained using spatial relations and not using spatial
relations in terms of recognition rate. Method 1 stands for our proposed approach, method 2
represents this approach without using spatial relations (only visual similarity) and method
3 is the same as method 2, but the shape distance is included in the process.

Method apple car cow cup dog horse pear tomato overall

1 98.4% 89.0% 87.1% 99.4% 69.4% 70.0% 91.0% 99.4% 88.0%

2 92.9% 54.3% 17.1% 90.0% 17.1% 0% 0% 95.7% 45.9%

3 97.1% 67.1% 21.4% 94.3% 15.7% 4.3% 48.6% 97.1% 55.7%

This shows that integrating spatial structure for matching different object
parts is important, because even when there is a correspondence among the
visual features, it is necessary to check the spatial consistency. This spatial
consistency is also very important in order to recover the shape contour from
the substructure, considering it as a connected component. Otherwise, the
object may be recovered as a split shape.

That said, we still believe that, by using more sophisticated visual descrip-
tors of the regions, our results can improve significantly, but then again, the
spatial relations should not be discarded in this process.

7 Conclusions

In this work we have proposed a new method for representing and combining
visual features of images (such as color, texture and shape) with spatial rela-
tions between regions, obtained from the partitions of combinatorial pyramids,
in order to improve object recognition tasks. We proposed the use of a spatial
similarity measure to test the similarity between spatial features, and also a
graph matching scheme to compute the overall similarity between objects. We
performed experiments that proved that the object recognition accuracy can
be improved by taking into account the spatial distribution of object parts,
even when the visual description of the image regions is simple, and especially
when we do not have apriori knowledge regarding the objects present in it.

In future works we plan to improve the evaluation of the pyramid levels that
will participate in the recognition process, since we are basing our evaluation
only in the image edges - thus inheriting the problems related to edge detection
- disregarding other visual cues that may help in the evaluation. Also, using
another classifier , such as SVM, instead of the nearest neighbor classifier, may
improve the results. We also plan to introduce and test other visual features
to characterize the pyramid’s regions in order to better discriminate among
objects that share notable similarities regarding their shape and appearance.
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