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Abstract. Image segmentation and Automatic Image Annotation (AIA)
are two important areas that still impose challenging problems. Address-
ing both problems simultaneously may improve their results since they
are interdependent. In this paper we give a step ahead in that direc-
tion considering different segmentation levels simultaneously and pos-
sible contextual relations among segments in order to improve the au-
tomatic image annotation. We propose to include hierarchical relations
among regions of an image in a Markov Random Field (MRF) model for
annotation. This relations are obtained from irregular pyramids, which
keep parent-child relations among regions through all the levels. Our
main contribution is therefore the combination of the irregular pyramid
approach with context modeling by means of hierarchical MRFs. Exper-
iments run in a subset of the Corel image collection showed a relevant
improvement in the annotation accuracy.

Keywords: automatic image annotation, Markov random fields, irreg-
ular pyramids

1 Introduction

Image segmentation and Automatic Image Annotation (AIA) are very important
research areas in computer vision due to their relevance for many applications,
such as image retrieval and scene understanding. However, the problems that
arise in both fields are frequently addressed independently, disregarding the rela-
tion between them. Both fields suffer from the well-known semantic gap between
low level image features and high level concepts, which is still a struggling point
for researchers world-wide. Addressing both problems simultaneously may help
closing the semantic gap and solving both more effectively.

Several approaches have been proposed in order to reduce the semantic gap.
Probabilistic graphical models are a promising alternative used with the purpose
of modeling in a more realistic fashion the context-dependent relations among
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data. In particular, Markov Random Fields (MRF) [1] are employed in computer
vision due to the possibility of modeling spatial neighborhood relations in images.

MRFs have been used for AIA in several works. In [2], a multiple MRF is
proposed, where, instead of building a single MRF, they construct one MRF for
each keyword in the vocabulary to capture different semantics among keywords.
The proposal of [3] explores dependencies among features and several words. In
[4] and [5], the co-occurrence information among words and the probabilities of
occurrence of spatial relations between pairs of words respectively are used as
interaction potential in an MRF model. While these approaches have focused
on exploring dependencies among features and words, and between neighbor-
ing pairs of words, we propose to explore hierarchical relations among different
segmentation levels of an image. Using hierarchies with MRF models is not a
new idea. In [6] they propose a segmentation method using two levels of a hier-
archy, where the region classification is performed independently at each level,
and later combined within the MRF model. It has been used also for texture
segmentation and denoising [7][8], where the hierarchy consists on two or three
layers representing different characteristics of the image. The main difference
with our proposal is that we will use a hierarchy of image partitions (repre-
sented as graphs) at different levels of resolution, and we will construct a MRF
at each level that will be fed with the MRF information computed in adjacent
levels, for the purpose of improving image annotation.

To obtain a hierarchical representation of images, we use irregular pyramids
[9], which are hierarchical structures formed by combinatorial maps. The com-
binatorial map at each level of the pyramid is equivalent to a Region Adjacency
Graph (RAG) [10] relative to a partition of the image. Irregular pyramids pro-
vide hierarchical relations among regions found at different levels, and topological
relations among regions of the same level.

Our main contribution is therefore the combination of the irregular pyramid
segmentation approach with context modeling for improving automatic image
annotation. This involves using an additional potential in a MRF model, taking
into account the hierarchical information among regions at different levels of
the pyramid. A MRF will be modeled for each level of the pyramid, taking
into account the initial labels (annotated with a base classifier) and contextual
(hierarchical and spatial) relations among image regions. The best configuration
of labels for each level will be computed in a bottom-top (taking information from
lower levels) and top-bottom (taking information from lower and higher levels
at the same time) processes, thus refining the initial annotation. Experiments
performed in a subset of the Corel image collection showed that the proposal
(called HMRF-Pyr) can clearly improve the annotation results and revealed the
advantages of using hierarchical relations.

The remainder of this paper is as follows. Section 2 provides an overview
of irregular pyramids. In Section 3 we present basic concepts regarding MRFs.
The proposed approach is presented in Section 4, followed by the experimental
evaluation in Section 5. Finally we present the conclusions and future work.
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2 Irregular Pyramids Overview

An irregular graph pyramid is a stack of successively reduced graphs (being
the base level the high resolution input image). In these graphs G = (V,E) the
vertices (V ) represent cells or regions, and the edges (E) represent neighborhood
relations of the regions. When we build an irregular pyramid from an image, each
level represents a partition of the pixel set into cells, i.e. connected subsets of
pixels. On the base level (level 0) of the pyramid, the cells represent single pixels
and the neighborhood of the cells is defined by the 4-connectivity of pixels. A
cell on level k (parent) is a union of neighboring cells on level k − 1 (children)
[11]. Each graph is built from the graph below by selecting a set of surviving
vertices and mapping each non surviving vertex to a surviving one. In this way,
each surviving vertex represents all the non surviving vertices mapped to it and
becomes their father [11]. This parent-child relations may be iterated down to
the base level and the set of descendants of one vertex in the base level is named
its receptive field (RF). Some of these concepts are illustrated in Figure 1.

Fig. 1. Construction of the irregular pyramid. (a) Set of surviving vertices, depicted
in black, (b) contraction kernels for this set and (c) irregular pyramid built using the
contraction kernels from b

Within the irregular pyramid framework the reduction process is performed
by a set of edge contractions. The edge contraction collapses two adjacent vertices
into one vertex and removes the edge. This set is called a Contraction Kernel
(CK) [10]. The contraction of the graph reduces the number of vertices while
maintaining the connections to other vertices.

This pyramid is able to represent several topological relations between re-
gions. Besides the classical adjacency relationship encoded by the Region Adja-
cency Graph (RAG), each graph may also contain parallel edges and self-loops,
representing several common boundaries and inclusion relations respectively [10].

Combinatorial pyramids [10] are introduced in order to properly characterize
the inclusion relationship, which cannot be fully represented using graphs. In
this case, the edges orientation around a vertex is needed. A Combinatorial Map
(CM) may be understood as a planar graph encoding explicitly the orientation
of edges called darts, each dart having its origin at the vertex it is attached
to. A CM can be defined as G = (D,σ, α), where D is a set of darts (an edge
connecting two vertices is composed of two darts d1 and d2, each dart belonging
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to only one vertex), α is the reverse permutation which maps d1 to d2 and d2
to d1 and σ is the successor permutation which encodes the sequence of darts
encountered when moving around a vertex [10]. A combinatorial pyramid is then
a stack of successively reduced combinatorial maps, having the advantages that
each CM explicitly encodes the orientation of darts around each vertex

3 Markov Random Fields

Intuitively, Markov Random Fields [1] are undirected graphical models that com-
bine information from a set of observations, and interaction information obtained
by the relation with neighbors. Formally, we can say that Y = {Y1, Y2, ..., Yn}
is called a random field, being Yi random variables on a set of sites S, that can
take values yi in a set of labels L. This can be depicted as an undirected graph,
where each vertex i represents the random variable Yi and the edges represent
direct dependence relations between variables. Henceforth, the terms “vertex”
and “variable” shall be used interchangeably.

A Markov Random Field is a random field that obeys the Markov property
P (yi|yi−1, yi−2, ..., y1) = P (yi|N(yi)), where N(yi) is the set of neighbors of yi.
This means that given its neighbor set N(yi), a vertex i is independent of all
other vertices in the graph. The most probable configuration of labels Y ∗ for a
MRF is the one that maximizes the joint probability P (y). This joint probability
is modeled by some restrictions represented by local probabilities, also known
as potentials. The potentials can be interpreted as constrains that penalizes or
favors certain configurations of Y . The joint probability is expressed as Eq. 1

P (y) =
1
Z
∗ exp−Up(y) (1)

where Z is the partition function or normalizing constant and Up(y) is the energy
function. Up(y) is computed using the aforementioned potentials (Eq. 2).

Up(y) = VO(y) + λ
∑

I

VI(y, y′) (2)

VO(y) stands for the association (or unary) potential, which represents infor-
mation coming from the observations. VI(y, y′) is the interaction (or pairwise)
potential and models the information obtained from neighboring vertices (y, y′).
λ is a constant introduced to weight the relevance of the restrictions imposed
by the potential functions. The Maximum A Posteriori (MAP) optimal config-
uration Y ∗ is obtained by minimizing the value of Up(y). Common methods for
achieving this optimal configuration are the Iterated Conditional Modes (ICM),
Simulated Annealing and Loopy Belief Propagation (LBP), among others [12].

Although higher order potentials could be used in the model (making yi

dependent on a number O of variables), we prefer to use only unary and pairwise
potentials, since higher order potentials largely increase the computational cost
for finding the optimal configuration.
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4 Proposed Approach

The definition of MRFs (see Section 3) and most of its applications in images,
deal with two basic relations: the relation of a region feature (observation) with a
label, and the relation of neighboring labels. We are proposing to include in this
framework a parent-child relationship, driven by the notion that in a hierarchical
representation, the children regions may have a trustworthy vote regarding its
parent’s classification and viceversa.

We propose to build a MRF for each level of the pyramid, starting from bot-
tom to top, and at each level l, the information regarding the best configuration
of labels Y ∗l−1 obtained in level l− 1 is used as additional information to com-
pute the current level’s label configuration Y ∗l. When the top level is reached,
the same process is repeated from top to bottom, now using Y ∗l−1 and Y ∗l+1

to compute Y ∗l. The MRF for each level will have the same structure of the
underlying RAG in the irregular pyramid.

The Markovian neighborhood N(yl
i) of label yl

i can be split into two neighbor-
hoods: the spatial neighborhood and the hierarchical neighborhood. The spatial
neighborhood of label yl

i corresponding to vertex i, is composed by the labels
assigned to all the vertices adjacent to i in the RAG of level l. The hierarchical
neighborhood is formed by all the labels assigned to the Contraction Kernel of
vertex i in level l − 1 and by its parent’s label in level l + 1.

We propose to compute the energy function as depicted in Eq. 3.

Up(yl) = λOVO(yl
i) + λI

∑
i

VI(yl
i, y

l
j) + λH

(∑
ch

VCh(yl
i, y

l−1
k ) + VP (yl

i, y
l+1
m )

)
(3)

This is an extension of Eq. 2, introducing VCh(yl
i, y

l−1
k ) as a hierarchical

potential that models the relation of label yl
i (assigned to vertex i of level l of

the pyramid) with its child label yl−1
k , and VP (yl

i, y
l+1
m ) that models the relation

of yl
i with its parent label yl+1

m . The label yl−1
k was assigned to vertex k in level

l−1 of the image pyramid by the MRF computed for this level. Vertex k belongs
to the CK (See Section 2) of vertex i (k ∈ CK(i)). The observation, interaction
and hierarchical potentials are weighted by λO, λI and λH respectively, and
λO + λI + λH = 1.

Having stated the energy function, we defined each potential as follows. The
association potential VO(yl

i) is defined as in [4]. We use as base annotation system
the k-nearest neighbors (KNN) classifier. In order to rank candidate labels for
a given region we use the distance of the test instance to the top k-nearest
neighbors as relevance weight. As presented in [4], relevance weighting is obtained
using Eq. 4.

PR(yl
ij) =

dj(xl
i)∑k

n=1 dn(xl
i)
, yl

i ∈ Y, xl
i ∈ X (4)
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where dj(xl
i) is the Euclidean distance in the attribute space of observation xj

(corresponding to the j-nearest neighbor) to xl
i (the test instance), being Y the

set of labels and X the set of observations.
The association potential is then expressed as in Eq. 5,

VO(yl
i) =

1
PR(yl

i)
(5)

the interaction potential is defined in Eq. 6,

VI(yl
i, y

l
j) =


0 if yl

i = yl
j

1 if yl
i 6= yl

j

(6)

the potential related with the children information is defined by Eq. 7 and the
potential related with the parents information is presented in Eq. 8

VCh(yl
i, y

l−1
k ) =

0 if yl
i = yl−1

k

1 if yl
i 6= yl−1

k

(7) VP (yl
i, y

l+1
m ) =

0 if yl
i = yl+1

m

1 if yl
i 6= yl+1

m

(8)

where k ∈ CK(i) and i ∈ CK(m).
The interaction potential penalizes neighbors with different labels with re-

spect to the current vertex, while hierarchical potentials punish children or par-
ents having different labels than the current vertex. In order to obtain the op-
timal configuration Y ∗, we used the ICM algorithm, which is efficient and, al-
though usually criticized for converging to local minimums, for this case the
results were very similar to other more complex methods. This might indicate
that for the current problem, ICM is actually converging to the global minimum.

5 Experiments

In order to validate our proposal, we ran experiments on a subset of the Corel
image collection. Specifically, we used the CorelA subset developed by [13]. This
dataset contains 205 natural scene images split into two subsets with 137 images
for training and 68 images for testing. All images have been segmented using
normalized cuts [14] and they have been manually annotated with 22 classes.

The irregular pyramids computed for these images have an average of 20
levels. For these experiments we tested all the levels ranging from level 6 to 16,
in order to avoid extreme oversegmentations or undersegmentations. Following
the idea of [15], we used as visual features for each vertex (region) of each
graph, the quantization of the RGB values in 16 bins per channel, yielding a
48-dimensional color histogram, and a local binary pattern (LBP) histogram to
characterize texture in the region.
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Fig. 2. Accuracy results in the CorelA dataset using different parameter combinations.

The experiments were performed using as base annotation system a KNN
classifier as implemented in [4]. We used this base classifier in order to be fair
in the comparison, sticking to the conditions imposed by [5]. Nevertheless, we
believe that, by using a more sophisticated classifier, our results can be improved.
Since we used a different segmentation approach than the one used by [5] to
label image regions, we measured the accuracy of the annotation at pixel level.
Results can be seen in Table 1. The first three rows show the average accuracy
over 10 runs obtained using the algorithms for each level of the pyramid. We are
comparing the base classifier KNN with our hierarchical MRF approach (HMRF-
Pyr) and the traditional MRF approach (without hierarchical relations). In row 4
we can see the relative improvement of HMRF-Pyr with respect to the KNN base
classifier and row 5 shows the relative improvement of HMRF-Pyr over MRF.
We tested several combinations of λO, λI and λH , having better results with
0.25, 0.25 and 0.5 respectively. This results can be analyzed in Fig. 2. Horizontal
axis show the pyramid levels and vertical axis depict annotation accuracy (in
%). For clarity, in Fig. 3 we can see an extract of Fig. 2, only showing the best
results using the hierarchical information, the best results when this information
is not used (λH = 0), and the base classifier KNN results.

In Fig. 4, some segmentation and annotation results can be seen for images
of the CorelA set. From these results we can see that the HMRF-Pyr approach
involving hierarchical and neighborhood relations improved the annotation accu-
racy with respect to the base classifier and with respect to the traditional MRF
approach. This is consistent with the initial assumption that the annotation of
children regions have influence in its father classification and viceversa.

Comparing our approach with other methods that were tested on this dataset,
we can see that the highest annotation accuracy obtained by [5] is of 45.64%,
while our best result is 44.6% (See Table 2). These results are similar (1 point
difference), however some test conditions (segmentation method and low level
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Table 1. Results obtained in the CorelA subset for each level of the pyramid

Pyramid levels
Algorithm 6 7 8 9 10 11 12 13 14 15 16

KNN 31.7% 31.8% 31.8% 32.0% 31.9% 32.0% 31.9% 31.7% 31.6% 31.1% 30.7%

MRF 42.2% 42.3% 42.2% 42.1% 41.8% 41.6% 41.2% 40.3% 39.7% 38.9% 37.9%

HMRF-Pyr 44.5% 44.5% 44.5% 44.6% 44.5% 44.4% 44.0% 43.5% 42.8% 41.9% 41.0%

Imp. HMRF-Pyr/KNN 12.8% 12.7% 12.7% 12.5% 12.6% 12.3% 12.0% 11.8% 11.2% 10.8% 10.3%

Imp. HMRF-Pyr/MRF 2.2% 2.1% 2.3% 2.5% 2.7% 2.8% 2.9% 3.1% 3.1% 3.0% 3.2%

Fig. 3. Extract of Fig. 2, for clarifying the improvement obtained when using the
hierarchical potential (λH 6= 0), with respect to not using it (λH = 0).

features) are different and it is more relevant the gain with respect to the base
classifier (last column of Table 2). For them, KNN scored 36.8%, while we ob-
tained 32%. The best improvement for [5] over the base classifier was 8.82%,
while our relative improvement is 12.8%. In our opinion, this relative improve-
ment shows the importance of the hierarchical information in problems with
context-dependent information, and the relevance of combining segmentation
and annotation simultaneously. It can be seen in Fig. 4 that segmentation can
be enhanced with annotation, simply by joining regions with the same label.

6 Conclusions

In this paper we proposed an approach that combines irregular pyramid segmen-
tation with image annotation based on Markov Random Fields. MRFs allow to
take into account contextual relations when performing the annotation, and we
proposed an enhance to this model by using the hierarchical relations among re-
gions of different levels of the irregular pyramid. As experimental results showed,
hierarchical information actually provides relevant information to the annotation
process, which combined with neighborhood information, can represent an im-
portant improvement with respect to the base classifier.
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HMRF-Pyr

MRF

KNN

HMRF-Pyr

MRF

KNN

Fig. 4. Examples of Corel image annotation results. First column shows original images
with its ground truth annotation mask in second column. Columns 4 to 6 show different
pyramid levels. For each image, the first row of levels shows the annotation result with
HMRF-Pyr, the second row shows the MRF annotation result and the third one shows
the annotation result achieved with KNN. At the bottom we can find a color legend to
understand the annotation results. (Best seen in color)

In future work, we have the intention of elaborating a multilevel segmenta-
tion/annotation algorithm where the structure of higher levels is modified by
the lower levels information.
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