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Abstract. Face recognition has been studied for years due to its wide range of applications. Under 

controlled environments with cooperative subjects the recognition accuracy is satisfactory. 

However, there is a growing interest in real applications such as surveillance and video protection in 

which face regions tend to be small because subjects are far from cameras. In such scenarios, the 

recognition accuracy of face recognition is still unsatisfactory because of low resolution (LR) image 

quality. Low-resolution face recognition (LR FR) have the purpose of recognize faces from small 

size or poor quality images with varying pose, illumination, expression and others. This report 

provides a survey of different methods to recognize faces using LR face images and discusses some 

issues related to this topic. 

Keywords: low-resolution, face recognition, super-resolution, face hallucination, feature extraction. 

 

Resumen. El reconocimiento de rostros ha sido estudiado durante años debido a su amplia gama de 

aplicaciones. Bajo entornos controlados y con la cooperación de los sujetos  las tasas de 

reconocimiento son satisfactorias. Sin embargo, existe un creciente interés en aplicaciones reales 

como vigilancia y video-protección en las que el tamaño del rostro tiende a ser pequeño ya que los 

sujetos se encuentran alejados de las cámaras. En estos escenarios, la precisión del reconocimiento 

facial sigue siendo insatisfactoria debido a la calidad de las imágenes de baja resolución (BR). El 

reconocimiento de rostros a partir de imágenes de baja resolución (RR BR) tiene el propósito de 

identificar imágenes de rostro de pequeño tamaño o poca calidad que presentan variaciones de pose, 

iluminación, expresión y otras. Este reporte ofrece un análisis de diferentes métodos para reconocer 

rostros utilizando imágenes de BR y discute algunas cuestiones relacionadas con este tema. 

Palabras clave: baja resolución, reconocimiento de rostros, superresolución, alucinación de rostros, 

extracción de rasgos. 

1 Introduction 

Certainly, the biometrics applications for face recognition have achieved high recognition accuracy 

under controlled environments with frontal images. Nevertheless, in real applications face image size 

tend to be small and in such cases, the image do not have good definition of facial features. 

Discriminatory features present in the facial images used for distinguishing one person from another are 

lost due to the decrease in resolution resulting in unsatisfactory performance. As a result, these images 

with LR affect the performance of traditional face recognition systems. It was shown in [1] that 

traditional methods do not perform well when face images have relatively LR due to the fact that they 

are based on high resolution(HR) face images. 

LR FR aims at recognizing face images with LR and variations such as pose and illumination. This 

is a more difficult task due to the fact that the degradation in resolution leads to the lack of effective 
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features produces more noise to the image and cause dimensional mismatch when having to deal with 

different resolutions. To deal with the last one, three general approaches can be considered: 

interpolation, down-scaling and unified feature space. The first approach can be feasible under high-

resolution, but may drop in performance confronting with much lower resolution because it does not 

introduce any new information in the process. In the second approach it reduces the amount of available 

information, especially the high-frequency information mainly for recognition. Finally, the third 

approach seems to be direct for solving the mismatch problem but it is difficult to find the optimal inter-

resolution space. 

Resolution indicates the information amount in pixels in an image and allows establishing a detail 

level or quality of the image. Although several criteria have been used in the literature to determine 

when a face image is from low-resolution, in the area of face recognition the majority established a low-

resolution face image by the size of the face into the image; so the distance of subjects from the camera 

is an important measure. 

With the aim to recognize faces from LR face images, several methods have been developed; being 

the super-resolution (SR) one of the more used approaches. This technique is usually employed to 

recover the lost information in the source image. SR methods produce a reconstructed high-resolution 

image from a low-resolution one or a sequence of low-resolution images by making assumptions about 

the image structure or content. It requires the recovering of lost high-frequency information occurring 

during the image formation process. Since 2005, for including facial features into an SR method as 

prior information, many researchers have studied Simultaneous Super-Resolution and Recognition 

(S2R2) [2]. At present, resolution-robust feature representation methods have been considered. 

However, all of them are limited to different constraints and do not completely solve the problem of 

recognizing subjects using low-resolution face images. Recently, Zou and Yuen [3] proposed the very 

low recognition problem (VLR), where the resolution of the face images to be recognized is lower than 

16x12 pixels. 

In order to have a clear idea on various LR FR methods, it is important to evaluate them based on 

certain evaluation criteria with some standard LR face databases. Unfortunately, this is seldom achieved 

due to the lack of general criteria and databases originally developed for LR FR. At present, this kind of 

methods is just evaluated based on high resolution face recognition criteria and databases. Therefore, a 

few standard LR face databases must be necessarily built for fair comparisons in future works. 

2 Challenges in Low-Resolution Face Recognition 

Face recognition is a difficult task, even more because it has to lead with face variations such as pose 

and expression. Many methods have been proposed for reducing the effects of the changes, such as the 

Discrete Cosine Transform (DCT) [4] on an edge map. However, most of the successful techniques 

could not be efficiently applied to LR data. Then, low resolution face images, as a new sub-area in face 

recognition, presents a greater challenge to recognition process.  

 

Fig. 1. Architecture of a face recognition system. 

Although many efforts have been made to improve LR FR methods, some specific problems still 

exist in real applications, especially in surveillance scenarios. The figure 1 shows the standard face 
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recognition system including preprocessing, facial representation, feature extraction, and feature 

classification. All these stages have intrinsic problems which affects the performance of methods.  

Preprocessing 

Thus, alignment is one of the most important preprocessing issues in face recognition, especially in 

LR FR. Manual alignment is very difficult in applications such as video surveillance and the state-of-

the-art face detectors such as AdaBoost [5] remain poor in detecting LR face images. To cope with this 

problem, some researchers attempted to propose automatic alignment techniques [6].  

Facial representation 

Most of the existing LR FR methods assumed the constrained cases such as frontal pose, good 

illumination, and neutral expression, while few methods focused on facial representation against 

different variations. For example, Chang et al. [7] examined the effect of resolution reduction with 

illumination variations. The majority of the methods only considered single variation by preprocessing 

or selecting the most suitable samples before recognition, that is to say they do not cover multiple 

variations. 

Feature extraction 

Most of the effective features used in HR FR such as texture and color may fail in LR case. Thus, it 

is difficult to find resolution-robust features for LR FR, especially under facial and environmental 

variations. Lei et al. [8] proposed a novel texture descriptor named Local Frequency Descriptor (LFD) 

based on Local Binary Patterns (LBP) and Fourier transformation. 

Feature classification 

Noise affection, misalignment, and lack of effective features commonly exist in face recognition 

system no matter HR or LR case. However, a dimensional mismatch problem in the traditional 

classification framework is the most essential problem in LR FR. Li et al. [9] proposed the coupled 

locality preserving mappings (CMs/CLPMs) model to build a unified feature space including SR and 

robust features for increasing the discriminability and generalization. 

Table 1. Comparison between low-resolution and high resolution methods.  

Criteria 
Low-resolution face recognition 

methods 

High-resolution face recognition 

methods 

Advantages Lower computational cost and storing More features, more information, 

and less noises 

 

Disadvantages More noises, less information, and 

fewer available tools 

 

Higher computational cost, and 

storing 

Principal methods MDS[14], S2R2[2], LFD[7], 

CLPMs[9] 

LDA [71], PCA [28], LPP[38] 

 

 

There are two paradigms for face recognition of low resolution faces. One is to use SR algorithms to 

enhance the image before recognition. On the other hand, it is possible to match in the low resolution 

domain by down-sampling the training set, but this is undesirable due to features important for 

recognition depend on high frequency details that are erased by down-sampling. In [2] they showed that 

the approach of matching in the low-resolution domain is better than applying SR when faces are of 

very low resolution. 

3 Classification 

Although some methods may overlap category boundaries, low-resolution face images methods can be 

divided into two main groups: SR methods and resolution-robust feature methods (see figure 2). 
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Fig. 2. Categorization of low-resolution face recognition method. 

SR is used at first to synthesize the higher-resolution images from the LR ones, and then traditional 

HR methods could be used for recognition. This approach is considered from two criteria: vision-

oriented methods (with the aim to improve visual quality) and recognition-oriented (from a recognition 

discriminability perspective). However, most of these methods [10] tried to enhance face appearance 

but failed to optimize face images from recognition perspective. Recently, a few attempts were made to 

achieve these two criteria under very LR case [3]. Vision-oriented methods can also be divided into two 

groups: reconstruction-based methods and learning-based methods. The first one can be addressed by 

frequency domain or by spatial domain. Recognition-oriented can be considered from two points of 

view further: feature SR [11] and S2R2 [2]. 

Resolution-robust feature methods consist on extracting the discriminative information from LR 

images. These methods can be divided into two groups further. One is feature-based method in which 

the resolution-robust features, such as texture [12], and subspace [13] information, are used to represent 

faces. However, some features used in traditional HR methods are sensitive to resolution. The other is 

structure-based method, e.g., multidimensional scaling (MDS) [14] in which the relationships between 

LR and HR are explored in resolution mismatch problem. 

4 Super-Resolution 

Face SR is a technique to reconstructs high-resolution face images from low-resolution face images, 

with the help of a-priori information of a sample dataset. It can restore the detail information of face 

features and enhance the resolution of poor quality face images, so it has an important role in improving 

the perceptual quality of face images. 

SR has gained much more attentions in comparison to the development of resolution-robust face 

recognition methods, due to many problems that degrade the quality of face images in LR case. The 

problem here is that, as resolution decreases, SR becomes more vulnerable to environmental variations 

and it introduces distortions that affect recognition. 

There are some ways of performing SR algorithms, but most of them are variations of two main 

approaches. Several approaches use single-frame SR which uses prior training data to enforce SR over a 

single low-resolution input image. Few methods deal with the multi-frame SR in which the HR image is 

derived from several LR observations of the scene which are typically aligned with sub-pixel accuracy. 

This method consist of two main stages, firstly estimating motion parameters between two images 

referred as registration, and secondly projecting the low-resolution image into the high resolution grid 

referred as reconstruction.  
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Hadid et al. [15] found that hidden Markov model (HMM) based methods with long sequences 

performed better than with short ones in both LR and HR, which means abundant information for 

recognition is included in video. Demirel et al. [16] used SR on different wavelet subbands of localized 

moving regions and composing the super-resolved subbands using inverse DWT to generate the 

respective enhanced high resolution frame. Dedeoglu et al. [17] proposed the concept of video 

hallucination by exploiting spatio-temporal regularities. Wheeler et al. [18] adopted a sequence of video 

frames represented by the active appearance model (AAM) for LR FR. Video-based feature extraction 

or video-to-video matching will provide a promising way for addressing the LR problem. Furthermore, 

multimodal biometric recognition systems, including LR FR may be used for recognition at a distance 

in the future.  

In the last decade, most of the conventional SR methods, called vision-oriented, applied 

reconstruction followed by recognition. Theoretically, applying SR technique on the low-resolution face 

image, the reconstructed high-resolution image can be used for face recognition. However, this idea 

works well only if the input face image is frontal and captured under good illumination. Most of these 

techniques attempt to obtain a good HR reconstruction and are not optimized with respect to recognition 

performance. Recently, some researchers focused on SR mainly for recognition, called as recognition-

oriented SR obtaining promising results for LR classification. 

The landmark works in this category are face hallucination [19] and S2R2 [2]. The former proposed 

an algorithm to learn a prior on the spatial distribution of the image gradients for frontal images of 

faces. The gradient prior is learned using a collection of high resolution training face images. The latter 

is based on extracting a high-resolution template that simultaneously fits SR as well as the face-feature 

constraints. 

4.1 Vision-Oriented Methods 

This kind of methods produces a reconstructed high-resolution image from one or several LR images 

assuming information about the structure of the image or their contents [19]. Most of the vision-

oriented SR methods have attempted to minimize mean-squared error (MSE) or maximize signal to- 

noise ratio (SNR) between the original HR and the reconstructed SR images. However, in face 

recognition, these SR approaches may not perform well, as most face recognition systems rely on the 

ability to identify key facial features, typically captured by the high-frequency content. Obtaining a 

higher SNR does not necessarily contribute to a higher recognition rate since high fidelity 

reconstruction of low-frequency content may dominate the image [20]. 

Thus, the goal of vision-oriented SR methods is to obtain a good visual reconstruction, but not 

usually designed from recognition perspective. Despite their improvements, this kind of methods has 

limitations such as inconsistent targets in restoration and recognition. Moreover, minimizing the 

reconstruction error in image restoration may not always guarantee good performance of the subsequent 

face recognition. A promising way to further improve the robust performance of SR for recognition is to 

embed SR into recognition. 

4.1.1 Reconstruction-Based Methods 

 

The conventional SR methods attempt to recover the source image by solving the ill-posed inverse 

problem, y = Hx + v, where x is the unknown HR image to be estimated, y is the observed LR image, 

H is the degradation matrix, and v is the additional noise vector. Under the scarcity of observed LR 

images, the inverse process is an undetermined problem, thus the solution is not unique. To find a 

solution, some prior information of the images is often incorporated into the reconstruction process. 

Reconstruction-based methods [21] produce an HR image under the constraint that the smoothed and 

down-sampled version of the reconstructed HR image is close to the input LR image.  For example, 

back-projection algorithm iteratively minimizes the reconstruction error. But, those algorithms rarely 
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avoid artifacts along the strong edges. Hence, the basic idea in this approach is reconstructing HR 

images simulating the image formation process. Its performance is affected by the noise level present in 

the face image, the accuracy to estimate the Point Spread Function (PSF) and the alignment accuracy. 

In the preprocessing step this approach only aims at minimizing the reconstruction error between 

restored images and the ground-truth, without any consideration of the subsequent recognition target. 

The restoration process with inconsistent target cannot always improve the performance of face 

recognition as much as we expected. Besides, the SR and deblurring algorithms used are usually 

computational complex, which is not ideal for some real-time systems.These groups of methods have 

several limitations when the magnification factor increases as referred Baker et al. [22] because some 

approaches do not incorporate any prior information about the super-resolved images. Recently, 

Nasrollahi et al. [23] tried to improve the magnification factor from about two to almost four by using 

multilayer perceptron. Moreover, the majority of these methods are more suitable for synthetizing local 

textures, so they are generally used to generic objects or scenes instead of face images. 

Reconstruction-based methods can be addressed into two different approaches: frequency domain 

and spatial domain. The former is based on modifying the Fourier transform while the latter is based on 

direct manipulations on image pixels. Here, we briefly summarize the two ways. 

Frequency Domain Methods   

 

Tsai and Huang are the pioneers of SR [24] idea who used the frequency domain approach. 

Reconstruction of high frequency details is the goal of these methods. 

Lucchese et al [25] presented a method for estimating planar roto-translations that operates in the 

frequency domain. They utilized separately rotational and translational components of the Fourier 

transform. A detailed inspection of frequency domain methods appears in [26]. Zhang et al. [27] 

performed SR in frequency domain with inferring DCT coefficients instead of estimating pixel 

intensities in spatial domain. Alternating component coefficients in DCT were inferred by the Markov 

network of low-level vision. Subspace methods are also applied to restrict the reconstructed HR image 

locating within face subspace, such as Principal Components Analysis (PCA) [28] and kernel PCA 

subspace [29].  

These methods have been used in practice because they are relatively simple and have a low 

computational cost. Still, the majority of this kind of methods focused on frontal faces, and fails to deal 

with unconstrained variations. Moreover, this approach restricts the translational motion as the DFT 

(Discrete Fourier Transformed) assume uniformly spaced samples. Moreover, prior information is often 

difficult to express in the frequency domain, which is an essential element to achieve good results in 

SR. 

Spatial Domain Methods 

 

These methods handle directly the image pixels. Although some of these methods have shown to be 

successful for high-resolution images based on local features, such as Gabor wavelets [30] and LBP 

[31]; facial texture SR in the spatial domain could not significantly improve the performance of low-

resolution image recognition methods [32]. This approach allows more flexibility to adopt all type of 

degradation model image in comparison with frequency domain methods.  

Fuzzy registration is a commonly used technique for reconstruction in spatial domain, which 

exploits the correlation between pixels of the target image and other LR images. It performs image 

registration and reconstruction simultaneously with a weighted average of neighbors.  

Interpolation method is another technique considered into this approach to increase resolution of 

images. This kind of methods allows calculating unknown numerical values through other values 

already known using specific algorithm. The basic idea is having a certain number of points acquired 

through sampling and from them, making a function that adjusts them. Both bilinear and bicubic 

interpolations are the most used methods in this group due to the simplicity and low computational cost. 
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However, with the increasing magnification factor, they are prone to generate overly smooth edges. 

Concluding, though being extremely fast, it suffers from excessive smoothing out of edges, and 

producing ringing artifacts during reconstruction. 

4.1.2 Learning-Based Methods 

 

This technique, also called face hallucination, was first proposed by Baker and Kanade [19]. It employs 

a training database consisting of pairs of high and LR images samples to output hallucinated high-

resolution faces. These methods are based on either global models or the patch approach. They exploit 

the prior knowledge between the high and its corresponding LR examples through so called learning 

process. Their technique ignores local details to focus on global information, so the resulting images 

lack detailed features. In this approach, the reconstructed high-resolution image shows significant 

blocking artifacts as the patch-based methods divide the image into small blocks that are uniformly 

overlapped and also because hallucination is performed on each block. 

 

Fig. 3. Learning-based approach. 

Figure 3 describes the basic concept of learning-based SR that is generally composed of two phases: 

learning phase and synthesis phase. At the learning phase, the training data, i.e., dictionary consisting of 

LR and HR patches is constructed. The LR and HR patch pairs are obtained from various training 

images. During the synthesis phase, the input LR image is super-resolved by using the dictionary. For 

each LR patch in the input image, its nearest neighbor LR patches are explored from the dictionary. The 

high frequency components of the input LR patch are synthesized using the best matched LR patches. 

[33] 

Establishing a good learning model to obtain the prior knowledge is the key to the learning-based 

method. Another challenge in face hallucination is the difficulty of aligning faces at low-resolution. 

Nowadays, the commonly used learning models include the PCA model [9], Markov model [31], 

and others. Wang and Tang [9] used PCA to express the input face image as a linear combination of 

low-resolution training face images, and the final high-resolution image is synthesized by replacing the 

low-resolution training face image with their high-resolution counterparts, making use of the same 

combination weights. Unfortunately, their technique ignores local details to focus on global 

information, so the resulting images are unclear and lack detailed features. 

Usually, existing learning-based SR methods require hundreds of thousands of training examples for 

a reliable performance. However, such a dictionary size causes huge memory cost for storing the 
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training samples as well as awfully large computational complexity in the matching process. Therefore, 

it makes conventional learning-based SR impractical in implementation and restrictive in applications. 

In [34] they achieve fast image SR by reducing the size of trained dictionary. The reduced dictionary 

size makes it possible to significantly speed up SR processing and save the memory cost, while 

providing reasonable visual quality. They used Feature Match [35] and a common source  image they 

showed a more accurate and much faster perform than other existing techniques. However, these results 

are for synthetic image SR, they don’t have to lead with face variations and other related issues. Some 

researchers added constrains to the process to improve its performance [3, 36]. Although some methods 

may overlap category boundaries, Zou et al. [3] further categorized learning-based SR methods into two 

groups, namely example-based method [27, 29, 36, 37] and Maximum a Posteriori (MAP) based 

method [5, 9, 38, 39, 41]. 

Example-Based 

 

Reconstructing a HR image from a linear or non-linear combination of training images is the goal of 

example-based methods. In this approach, it is important to determine the weight coefficients because 

they are useful to minimize linear or non-linear approximation error.  

Most example-based SR algorithms usually employ a dictionary composed of a large number of HR 

patches and their corresponding LR patches. The input LR image is split into either overlapping or non-

overlapping patches. Then, for each input LR patch, either one best-matched patch or a set of the best-

matched LR patches are selected from the dictionary. The corresponding HR patches are used to 

reconstruct the output HR image. However, most of the existing algorithms are computationally 

intensive in finding the best match of LR–HR patch from a big dictionary. Furthermore, best-matched 

but incorrect patches will seriously degrade the reconstruction results. 

Eigenface space [9], tensor space [37], and manifold learning techniques [38, 39] are used for 

example-based SR. Here, we briefly summarize them. 

Wang et al. [9] proposed a representative example-based method and treated the hallucination 

problem as a transformation between LR and HR. They used PCA to fit an input LR face image as a 

linear combination of LR training images. The HR image was then synthesized by replacing the LR 

training images with their HR counterparts while retaining the same combination coefficients. 

However, the linear PCA model could not capture distinct structures of the input face efficiently and 

only focused on global estimation without paying attention to local details. Thus, the results lacked 

detailed features, and caused some distortions. Moreover, they designed a mask to avoid artifacts on 

hair and background, and performed hallucination in the interior region of the face. In fact, local 

modeling and appropriate smoothing can be adopted to handle these artifacts properly. Given that, the 

idea of two-step in [40] can be used to compensate high-frequency features for the work. 

Compared with Wang’s work [9] that worked on the eigenface space, Liu et al. [40] proposed a two-

step approach in patch tensor space using a patch-based non-parametric Markov network locally to 

reconstruct high-frequency content. Assuming that the low-resolution space and high-resolution space 

share similar local distribution structure, the estimated parameters are used for synthesizing high-

resolution images. To further enhance the quality of the HR image, the coupled PCA method was 

developed for residue compensation. While the method added more details to the face, it also 

introduced more artifacts. Therefore, whether to adopt residue compensation techniques and when to do 

them is critical for SR.  

Manifold learning approaches suggest that the subspace of face images has an embedded manifold 

structure. The high-dimensional structure formed by HR face images is homeo-morphic with a 

geometric structure in LR space. It means that the features of LR and HR face images share a common 

topological structure, and thus, they are coherent through the structure. The basic idea is that small 

image patches in the low and high-resolution images form manifolds with similar local geometry in two 

distinct feature spaces. This method requires fewer training examples than learning based approach 

because the generation of a high-resolution image patch depends on multiple nearest neighbors. Some 
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ideas of manifold learning such as locality preserving projection (LPP) [38] and local linear embedding 

(LLE) [39] are introduced into SR. 

Zhuang et al. [41] developed locality preserving hallucination method based on LPP [42]. It 

combined LPP and Radial Basis Function (RBF) [43] together to hallucinate a global HR face. 

Compared with Wang’s work [9], the hallucinated global HR face contained more detailed features. 

However, there were more noises in the local features such as contour, nostril, and eyebrow, because 

LPP resulted in the loss of non-feature information. To improve the details of the synthesized HR face, 

they developed a residue compensation method based on patch by neighbor embedding [39].Their 

approach does not depend on just one of the nearest neighbors in the training set. They represent each 

low or high resolution image as a set of small overlapping image patches. 

In addition, some methods performed example-based SR on single-frame LR face image [5, 44]. 

Recently, Hu et al. [44] also developed a single-frame SR method, like Liu’s work [40]. They used both 

global and local constraints for hallucination; the difference was that their global model was derived 

from the non-rigid warping of reference face examples and the learning of the pixel structure. The 

warping could capture a moderate range of face variations. And the effects of warping errors were 

reduced by the adaptive weighting in the local prior model. Thus, the method could infer more faithful 

individual structures of the target HR face. 

Maximum a Posteriori (MAP) 

 

In the last decade, this approach has achieved great popularity because models bring necessary soft-

constrains to ensure an acceptable reconstruction under conditions of poor or bad quality of the input 

data, and also allows the effective reconstruction of borders. It allows one incorporating prior constrains 

in form of probability density, which is essential to find high quality solutions.  

To estimate this probability, different algorithms have different solutions. Baker et al. [3] first 

proposed the idea of face hallucination and led the precedent of learning-based method. They estimated 

the function probability by using an image Gaussian pyramid under Bayesian formulation. The method 

obtained high-frequency components from a parent structure based on training face images; however, it 

intrinsically relied on a complicated statistical model. 

Similar to Baker’s work, Capel et al. [45] also used MAP estimators, with the difference that Capel 

divided a face image into six unrelated parts, and applied PCA on them separately. Liu et al. [36, 40] 

proposed a two-step statistical method. They applied PCA linear model and a Markov random field 

prior to maximize a probability for obtaining a local feature. It depends on an explicit down-sampling 

function, which is sometimes unavailable in practice.  

Many methods treating face hallucination as a two-step problem have been proposed [46, 47]. They 

all perform the following two-step process. First, a global face image containing low-frequency 

information is obtained, which looks smooth and lacks some detailed features. Second, a residue face 

image keeping high frequency information is synthesized. Thus, the residue image is piled onto the 

global image to get the final super-resolved face images. For example, Li et al. [47] used a MAP 

criterion for reconstructing both the global image and the residual image. Jia et al. [46] proposed a 

unified tensor space representation for hallucinating low-frequency and middle frequency information, 

and then recovered high-frequency part by patch learning. 

4.2 Recognition-Oriented Methods 

The essence of the recognition-oriented SR methods is to satisfy the need of recognition with LR 

images. It embeds the elements of SR methods into face recognition. That is to say, fuses the models of 

the image formation process and the prior information, together with feature extraction and 

classification to design methods for recognition [2, 10, 47, 50]. 
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Compared with vision-oriented SR, recognition-oriented SR maybe more suitable for LR FR 

because it simultaneously performs SR and feature extraction with the direct goal of recognition and 

later performs feature SR with the aim of reconstructing low-frequency and high-frequency content for 

recognition. 

Some successes have been achieved by recognition-oriented SR methods such as S2R2 and feature 

SR. However, they just provide the framework for recognition oriented SR, and their recognition 

performances largely depend on different reconstruction regularization models and feature extraction 

techniques. Some common problems are still unsolved in these methods. For example, it is unclear what 

kind of reconstruction regularization method is more appropriate for recognition. In addition, feature 

extraction is known to be sensitive to large appearance changes due to pose, illumination, expression, 

etc. To combine SR and feature extraction is also an important issue for the future work. A possible 

way to handle these problems is to adopt more robust feature extraction techniques. 

4.2.1 Feature Super-Resolution 

 

It was proposed by Li et al. [47] to reconstruct HR features instead of HR images for face recognition. 

The kernel version of Support Vector Data Description (SVDD) [58] was used to synthesize HR 

discriminative features both for vision and recognition perspective [48]. A spherically shaped decision 

boundary around a set of objects is constructed by a set of support vectors describing the sphere 

boundary. It has the possibility of transforming the data to new feature spaces without much extra 

computational cost. However, the method is only applicable on frontal faces and its generalization 

ability remains doubtful. 

Two representative methods in this group are Nonlinear Mappings on Coherent Features (NMCF) 

[50] and Discriminative Super-Resolution (DSR) [3]. Both of them introduce classification 

discriminability into SR process. 

Huang et al. [50] proposed NMCF with Canonical Correlation Analysis (CCA) [51] to establish 

coherent features between LR and HR images represented by PCA. Here, the problem of SR of feature 

domain for face recognition is formulated as the inference of the HR domain feature 𝐶ℎ from an input 

LR image IL given the training sets of HR and LR face images  𝐼𝐻   and  IL, given by: 

𝐼𝐻    = {Ii
H} = [I1 ,

H  I2
H, … Im

H ], 
(1) 

 

IL = {Ii
L} =  [I1

L, I2
L , … , Im

L ],  (2) 

where m denotes the size of the training sets. The first step consists on extract the feature vectors 

𝑋𝐻 and 𝑋𝐿using PCA corresponding to the training HR images and the training LR images 

respectively: 

XH =  {xi
H}

I=1

m
∈ Rp x m,     (3) 

 

XL =  {xi
L}

I=1

m
 ∈ Rq x m. (4) 

Specifically, from the PCA feature training sets XHand XL they first subtracted their mean values X̅H 

and X̅L   taken, 

X̂H = [X̂1
H,   X̂2

H, … X̂m
H ], (5) 

 

X̂L = [X̂1
L,   X̂2

L, … X̂m
L ]. 

 
 (6) 
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CCA finds two base vectors VH and VL for datasets X̂H and X̂L in order to maximize the correlation 

coefficient between the coherent vectors CH= ( VH) T  X̂H and CL = ( VL) T X̂L.      

To find the base vectors VH and VL, they defined four main matrices: C11 =  X̂H  X̂HT
, C12 =

 X̂H  X̂LT
, C22 =  X̂L  X̂LT

, and C21 =  X̂L  X̂HT
 as their between-set covariance matrices. Then, 

computing:  

R1= C11
-1

 C12  C22
-1

 C21 , (7) 

 

R2= C22
-1

 C21  C11
-1

 C12 . (8) 

 

VH is made up of the eigenvectors of R1 when the eigenvalues of R1 are ordered in descending 

order. Similarly, the eigenvectors of R2 compose VL. We obtain the corresponding projected 
coefficient sets: 

𝐶𝐻 = {𝑐𝑖
𝐻}

𝐼=1

𝑚
 ∈  𝑅𝑝 𝑥 𝑚  , (9) 

 

𝐶𝐿 = {𝑐𝑖
𝐿}

𝐼=1

𝑚
 ∈  𝑅𝑞 𝑥 𝑚, (10) 

 
of the PCA feature sets 𝑋𝐻and 𝑋𝐿projected into the coherent subspaces using the following base 
vectors: 

𝑐𝑖
𝐻= ( 𝑉𝐻) 𝑇  �̂�𝑖

𝐻, (11) 

 

𝑐𝑖
𝐿= ( 𝑉𝐿) 𝑇  �̂�𝑖

𝐿 . (12) 

 
The correlation between the two sets 𝐶𝐻and 𝐶𝐿is increased after the transformation and the 

relationship between HR and LR features are more exactly established in the coherent subspace. 

Motivated by Zhuang’s work [41], they also applied RBF mapping to build the regression model by 

adopting the advantages of RBF, such as fast learning and generalization ability. This method was 

evaluated on 12×12 with FERET [52] database and obtained the accuracy of 84.4 % compared with 

36.9 % of the PCA baseline method. In regression based methods the idea is to learn a mapping from 

input LR images to target HR images, for example image pairs using kernel ridge regression.  

Recently, Zou et al. [3] proposed recognition of low resolution face image method with nonlinear 

variations. It learns the nonlinear relationship between LR face image and HR face image in nonlinear 

kernel feature space. They proposed the DSR method with new data constraint and discriminative 

constraint. It modeled the SR problem as a regression problem under very LR case such as 16 ×12 and 7 

× 6. 

In this work the SR problem is modeled by learning the relationship R from the given training data 

and the reconstructed HR image is recovered by applying R on the testing image. Instead of recovering 

the HR image directly, they learned the relationship R between HR image space and very LR image 

space. 

In order to find a better subspace induced by R with other additional constraint(s), so that the 

reconstructed HR images have more discriminative features, discriminative constraint is designed to the 

relationship learning based SR algorithm as follows: 

 

�̇�  = arg 𝑚𝑖𝑛𝑅′
1

𝑁
∑ ‖𝐼ℎ

𝑖 − 𝑅′𝐼𝑙
𝑖‖

2
+  𝛾𝑑(𝑅′)𝑁

𝑖=1 ,          (13) 

 

where γ is a constant to balance the above two terms. The HR image can be reconstructed after Ṙ is 

determined. The HR images reconstructed by Ṙ locates in a subspace where they can be better linear 

separable. Therefore, the HR image reconstructed by Ṙ will contain more discriminability and be better 

for recognition purpose. 
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 DSR shows its superiority from both visual quality and recognition performance. For example, SR 

results on 16 × 12 with Extended Yale B database are shown in Fig. 7. Also, DSR obtained the 

recognition accuracy of 73.5 % on 7×6 with CMU PIE [53] database in comparison with 40.5 % in the 

PCA baseline method. 

Zhifei et al. [20] established a brief comparison between DSR and NMCF. Both DSR and NMCF 

require a training set containing LR and HR image pairs to learn the nonlinear mappings from LR to 

HR feature space, followed by the reconstruction of SR images or features. Compared with NMCF, 

DSR performs more efficiently when LR images are used for training/gallery sets. Conversely, when 

HR training/gallery sets are used NMCF outperforms DSR. 

4.2.2 Simultaneous super-resolution and recognition methods 

 

Multimodal tensor super-resolution (M2TSR) [54] and S2R2 [2] are two representatives methods in this 

group. 

Multi-linear analysis [55] is a general extension of the traditional linear methods such as PCA. 

Instead of modeling the relations within vectors or matrices, multi-linear analysis provides a means to 

investigate the mappings between multiple factor spaces.  

Tensor Face [55] has been proposed for a multi-linear analysis to model explicitly the multiple 

modes of variations in facial images and their inter-relationships. Although experiments suggested 

improved recognition performance over traditional approach, the recognition rates based on tensor face 

methods decrease dramatically with low-resolution inputs. 

Jia et al. [54] performed multimodal face image SR for recognition in tensor space. They integrated 

the task of SR and recognition by directly computing a maximum likelihood identity parameter vector 

in high-resolution tensor space for recognition. Although it did not simultaneously cope with pose and 

illumination variation, face hallucination and recognition were unified in this way. However, its 

disadvantage was that the tensor manipulations for reconstruction demanded high computation 

expenses. This method is a tensor extension of the SR problem for the single modal LR face image. The 

consideration of multimodality could contribute to LR FR.  

More recently, some researchers propose a new algorithm which could simultaneously carry out SR 

and feature extraction for LR face recognition [2]. They proposed S2R2 method with the main purpose 

of obtaining a suboptimal output HR image from both reconstruction and recognition perspectives. In 

this approach, face features are included in an SR method as prior information. S2R2 consist on a two-

step approach that uses constraints of an SR algorithm and features from a classifier trained with images 

having the desired resolution. They showed that the performances of conventional SR methods were 

degraded under very LR case. 
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Fig. 4. Multi-modal super-resolution and recognition process in tensor space using a multi-view super-resolution 

example. 

Formula (14) denotes the base model of S2R2,   𝑦𝑝,  𝑓𝑔
(𝑘)

   and x denote the input LR probe image, 

the gallery image in the kth class, and the output HR image, respectively; B, L, and F represent 

operators for down-sampling, smoothness and feature extraction, respectively; besides, α and β are the 

regularization parameters. The goal of the S2R2 model is to obtain a suboptimal output HR image x for 

satisfying the need of vision and recognition simultaneously. 

 

‖Bx − yp‖
2

+  α2‖Lx‖2+β2 ‖Fx − fg
(k)

‖
2
. (14) 

 

In addition, the base S2R2 model was improved by involving the cases of multi-frames or multi-

cameras version 𝐵(𝑖). Furthermore, the base SR prior model 𝑙(𝑘)and feature extraction 𝐹𝐿 were modified 

based on multi-resolutions version (l or L). The modified model is shown in (7), where α, β, γ are the 

regularization parameters, and B denotes the image formation process. The base S2R2 model and the 

improved version tested on CMU Multi-PIE [56] database on 6×6 obtained the accuracies of 62.8 % 

and 73 %, in comparison with the PCA baseline method at 47.1 %. 

 

‖Bix − yp
(i)

‖
2

+ α2‖Lx −  l(k)‖
2
+β2 ‖Fx − fg

(k)
‖

2
+ γ2 ‖FLBx −  fL

(K)
‖

2
. (15) 

 

Compared with the general indirect SR methods, S2R2 improves identification accuracy and gets 

promising results on 6 × 6. However, the parametric optimization needs to be repeated for each gallery 

image in the database, especially for large databases; thus, their formulation is quite time-consuming. 

Also, this method assumes that gallery and probe images are in the same pose, frontal or localized 

perfectly, directly resulting in its inefficiency under many general scenarios. Therefore, how to obtain 

the appropriate regularization parameters and reduce the computational complexity are two important 

issues in this model. 
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5 Resolution-Robust Feature Methods 

The difficulties of finding the effective features in LR case make face recognition more complicated. 

Some typical features in HR case such as texture, shape, and color may fail in the LR case. Still, 

exploring the potential of these features for LR FR or building inter-resolution space may provide a 

promising direction for solving this problem. 

Resolution-robust feature representation methods are classified into two groups: feature-based 

method [7, 13, 57] and structure-based method [8, 14, 58]. Compared with feature-based methods, the 

structure-based approach is more suitable for offline training, but they are mainly used for a single 

resolution application with the balance between efficiency and speed. The landmark works are color 

feature (Choi et al. [57]) and CLPMs. 

Although many researchers addressed resolution-robust feature representation, it is still a difficult 

task due to different variations. Most methods included into this group deal only with one variation and 

not with multiple variations. Compared with local features, global features are more sensitive to 

illumination variation, which is a significant obstacle for LR FR application. With regards to pose and 

expression variation, local features are more susceptive than global features. A possible way to further 

improve the robustness may lie in the combination of local based and global-based features. However, 

what features should be combined and how to combine them for concentrating their advantages are the 

future issues for LR FR. 

5.1 Feature-Based Methods 

This method identifies an LR face directly using the features extracted from probe images in resized 

forms. However, all the existing resolution-robust features are improved from the features used in HR 

FR, such as the improved color space [57] and the improved local binary pattern descriptor [7]. The 

feature-based methods can be used for multiple resolutions from HR to LR, but they need online 

training. We further can divide feature-based methods into two categories, that is, the global feature-

based method and local feature-based method. 

5.1.1 Global Feature Based Methods 

 

In this method, the whole LR probe image, represented by a single high-dimensional vector containing 

the global low frequency information, is taken as input. The advantage of this method is to implicitly 

preserve all the detailed texture and shape information, which is useful for recognizing LR faces. On the 

other hand, this method is also easily affected by variations such as pose and illumination similar to HR 

FR. 

Since many face recognition systems use an initial dimensionality reduction method, Gunturk et al. 

[28] proposed eigenface-domain SR in the lower dimensional face space. Moreover, some other 

approaches such as SVDD [59] have been used to address this issue. Although PCA is commonly used 

for facial images representation in global face SR, the features extracted by PCA are holistic and 

difficult to have semantic interpretation. Besides PCA is not a good factorization method for synthesis 

and reconstruction. To cope with this, Chengdong et al [60] introduce non-negative matrix factorization 

(NMF) to extract face features and propose a global face super-resolution with contour region 

constraints (CRNMF) for improving the quality of SR facial image. This method resolves many issues 

of the traditional method based on PCA. It reduces dependence on the pixels and preserves face 

structure similarity given that the contours of the human face contain the structural information.  

Color features are the representative global features. Choi et al. [57] first demonstrated that color-

based features could significantly improve LR FR recognition performance compared with gray-based 

features. The idea was based on the boosting effects of color features on low-level vision [61]. A new 

metric called variation ratio gain (VRG) was further defined to prove the significance of color effect on 
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LR face images within the subspace face recognition framework. They found that color components can 

compensate a decreased extra-personal variation by intensity component with LR, so RQCr color space 

was selected for LR FR. However, there is no formal demonstration that RQCr is more efficient for LR 

case in comparison with other color spaces. 

Therefore, to efficiently use color-based features for boosting intensity-based features is still an open 

issue. It is known that reducing the correlation of different color components is certainly helpful to HR 

FR, and even LR FR. Yang et al. [62] investigated the potential efficiency of color spaces, and proposed 

various normalized spaces such as the improved YRB space to enhance face recognition. 

Choi et al. [63] improved their work and proposed a color feature selection method by boosting-

learning framework. Thirty-six different color components were used to form a color-component pool, 

and a weighted fusion scheme was used to fuse the selected color features at the feature level. The 

method was successfully evaluated on very LR images with SCface [64] database. It improved the 

accuracy with RQCr space from 49.61 % to 62.78 % with the new color pool. The experiment indicated 

that the framework of color fusion was perhaps beneficial to LR FR. However, the role of color features 

for LR images is degraded by serious illumination variations despite of their successes in face 

recognition. 

Abiantun et al. [13] adopted the kernel class-dependence feature analysis (KCFA) method [65] for 

dealing with very LR case. KCFA used a set of minimum average correlation energy filters to exploit 

higher order correlations between training samples in the kernel space, and obtained the accuracy of 

27.1 % on 8 × 8 images compared with the PCA baseline method of 12 % on HR images using FRGC 

[66] database Experiment 4. 

5.1.2 Local Feature Based Methods 

 

Compared with global method, local feature based method provides additional flexibility to recognize a 

face based on its parts, and is more robust to variations. In this approach the LR probe image is 

represented by a set of low-dimensional vectors containing the local high frequency information. 

Ahonen et al. [58] adopted local phase quantization (LPQ) method based on the assumption of the 

PSF. The method used the phase information of Fourier transformed images for LR FR, revealing that 

LPQ information in the high-frequency domain was almost invariant to blurring. Afterwards, Lei et al. 

[7] made an improvement on LPQ and proposed LFD using not only phase information, but also 

magnitude information. Furthermore, the relative relationships between phase information were adopted 

without the assumption of the PSF instead of the absolute value. Also, a uniform pattern mechanism 

[31] was introduced to improve the performance. 

5.2 Structure-Based Methods 

This kind of methods focuses on constructing the relationships between LR and HR feature space for 

facilitating direct comparison of LR probe images with HR gallery ones from a classification 

perspective. The method aims to build the holistic framework for LR matching by solving the 

dimensional mismatch. A coupled mapping (CM) [8] is one kind of structure-based methods. Obtaining 

an inter-resolution space or unified feature space is the key for solving the mismatch problem in this 

approach.  

5.2.1 Coupled Mappings 

 

Choi et al. [58] first pointed out the dimensional mismatch problem, and proposed eigenspace 

estimation (EE) techniques for obtaining a common LR feature space for matching between LR and 

HR. Then Li et al. [8, 67] proposed a more general framework called unified feature space based on 

CM, as follows:  
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𝐽
(𝐴𝐿− 𝐴𝐻) =∑ ‖𝐴𝐿

𝑇𝑙𝑖 −  𝐴𝐻
𝑇 ℎ𝑖‖

2
.

𝑁𝑡
𝑖=1

        (16) 

In this model, 𝑙𝑖 and ℎ𝑖, represent an LR face image and an HR one, respectively; and 𝐴𝐿  𝑎𝑛𝑑 𝐴𝐻 are 

two coupled mapping matrices. For LR FR, the mapping between each LR image and the corresponding 

HR image is expected to be as close as possible in the new unified feature space. In [67] they 

formulated the coupled metric learning as an optimization problem. They decided two transformations: 

the former maps degraded images to a new subspace, where higher recognition performance can be 

achieved; the other one maps normal images and class labels together to the same subspace for better 

class-wise feature representation. The coupled transformations are determined by solving an 

optimization problem. 

Although CMs provides a promising framework for learning the relationships between LR and HR; 

it has a shortcoming in poor discriminability for classification. Therefore, Li et al. introduced the 

locality preserving objective [42] into nonparametric coupled mapping model, and proposed coupled 

locality preserving mappings (CLPM) method. It significantly improved the performance by involving 

the weight relationships among data points. However, CLPMs is sensitivity to the parameters and pose 

variations. 

Other works with the aim of improving CMs have been developed. Ren et al. [68] adopted CCA 

with local discrimination criterion [69] to compute the two coupled mapping matrices. With the process 

of regularization on feature space, the method showed its superiority compared with CMs/CLPMs in 

both recognition accuracy and time complexity. 

Recently, Ren at al. [70] further introduced the kernel tricks into CLPMs and proposed coupled 

kernel embedding (CKE) method for dealing with LR FR. By the kernel tricks, on one hand, CKE 

improved the classification performance; on the other hand, it increased the time complexity. 

 Similar to the work in [8], Biswas et al. [14] used MDS during training phase to embed LR images 

into a new Euclidean space in order to achieve the best distances between their HR counterparts. MDS 

is a technique used to extract a set of independent variables from a proximity matrix or matrices. MDS 

can be described as a set of techniques for interpreting similarity or dissimilarity data.  In [14] they 

highlighted the pose problem involved in LR recognition. This is an important contribution for 

researches on LR FR. They evaluated MDS on CMU Multi-PIE (8 × 6) and SCface database (12 × 10), 

and obtained the accuracies of 52 % and 71 %, respectively. In their experiments for LR FR, MDS 

performed better than sparse representation based SR [71]. 

As a conclusion, we can say that CMs needs to improve its ability in discriminability and generalize 

CMs from single LR to multiple LR applications even for across all resolutions. Moreover, this 

approach needs to solve the eigenvalue decomposition problem and obtain the two optimal mapping 

matrices. 

5.2.2 Resolution Estimation  

 

Resolution estimation makes efforts for dealing with the dimensional mismatch problem. It determines 

the kinds of structures chosen for building a LR FR system. Wong et al. [72] proposed two innovations 

for the LR problem. One was the concept of an underlying resolution, which did not rely on the size of 

face image. The other was that the local features sensitive to resolution were exploited for LR 

classification. Based on the innovations, they proposed a resolution detection and compensation 

framework for dynamically choosing the appropriate face recognition system.  

A similar method was proposed by Pedro et al. [73]. They developed the concept of estimating the 

acquisition distance in three different scenarios and the distance was taken as the weight to fuse two 

systems (PCA-SVM system and DCT-GMM system) at the score level. They demonstrated that training 

with medium distance images was a good way to control the performance degradation due to the 

varying distance. 
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5.2.3 Sparse Representation 

 

Is first proposed by Wright et al. [71] and recently has become one of the standard methods of face 

recognition followed by many researchers for representing LR probe images using HR training images 

from a structure perspective.  

This approach may provide a new theoretical framework for dealing with LR FR problem. It 

approach use an over-complete dictionary pair of low-resolution and high resolution patches. Initially, a 

pair of low-resolution and high-resolution dictionaries is co-trained. To perform the SR of a given LR 

image, each part of the image is compared to the LR dictionary and using the sparse coefficients on the 

LR dictionary, the HR patch corresponding to these LR patches satisfying certain spatial properties are 

combined to form the output. 

Researchers cast the recognition problem as one of classifying among multiple linear regression 

models. If the number of features was sufficiently large, and the sparse representation was correctly 

computed, they demonstrated that the choice of features was no longer critical. It was right even in the 

down-sampled images, though their work was not specialized for the LR case. However, like most of 

the other methods, sparse representation also requires a large amount of training covering different 

variations. Aimed at this problem, the non-local prior may be employed to enrich the textural 

information [74]. They used the self-similarity prior of the testing image to generate virtual observed 

LR examples. A few studies start to gradually upscale the LR image since self-similarities works better 

on small up scaling factors [75]. However, they lack a more explicit layer-wise model. In [76] they 

developed a new layer-wise model, referred to deep network cascade, to upscale the input LR image 

layer by layer each layer with a refined SR result. 

Recent progress has focused on the effectiveness of the l1 norm for recovering sparse 

representations. One significant implication is that under quite general conditions, the combinatorial 

problem of finding sparse solutions to systems of linear equations can be efficiently and exactly solved 

via convex optimization, by minimizing the l1 norm [77].  

Some results in sparse signal representation suggest that the linear relationships among high-

resolution signals can be accurately recovered from their low-dimensional projections [78]. Although 

the SR problem is very ill-posed, making precise recovery impossible, the image patch sparse 

representation demonstrates both effectiveness and robustness in regularizing the inverse problem. 

Following this idea, Yang and Wright et al. [79] adopted sparse representation for SR on face images. 

Similar to the learning-based methods, they rely on patches from the input image. However, instead of 

working directly with the image patch pairs sampled from high and low-resolution images, they learned 

a compact representation for these patch pairs to capture the co-occurrence prior, improving the speed 

of the algorithm. 

Two constraints are modeled in this work: 1) reconstruction constraint, which requires that the 

recovered X (higher-resolution image recovered from the SR method) should be consistent with the 

input Y (low-resolution image)with respect to the image observation model; and 2) sparsity prior, which 

assumes that the high resolution patches can be sparsely represented in an appropriately chosen over-

complete dictionary, and that their sparse representations can be recovered from the low resolution 

observation. 

1. Reconstruction constraint. The observed low-resolution image Y is a blurred and down-sampled 

version of the high resolution image X: 

Y = SHX, (17) 

here, H represents a blurring filter, and S the down-sampling operator. SR remains extremely ill-posed, 

since for a given low-resolution input Y, infinitely many high-resolution images X satisfy the above 

reconstruction constraint. We further regularize the problem via the following prior on small patches x 

of X: 
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2. Sparsity prior. The patches x of the high-resolution image X can be represented as a sparse linear 

combination in a dictionary Dh trained from high-resolution patches sampled from training images: 

×≈ 𝐷ℎ𝛼        for some 𝛼 ∈ 𝑅𝑘  𝑤𝑖𝑡ℎ ‖𝛼‖0  ≪ 𝐾. (18) 

The sparse representation α will be recovered by representing patches y of the input image Y , with 

respect to a low resolution dictionary Dl co-trained with Dh. 

Inspired by their work, Bilgazyev et al. [80] introduced the use of a Dual Tree Complex Wavelet 

Transform (DT-CWT) in a sparse representation framework for SR reconstruction. They estimate the 

high-frequency components, rather than studying the direct relationship between the high and low-

resolution images. They showed that, using conventional features such as Eigenfaces and facial parts, 

the proposed algorithm achieves much higher recognition accuracy on face images with variation in 

either illumination or expression. They reported that the recognition rates outperformed SRSR [79] and 

S2R2 [2] for the CMU PIE database. 

One of the limitations of the sparse representation is the assumption of pixel-accurate alignment 

between the test image and the training set. This leads to brittleness under pose and misalignment, 

making it inappropriate for real applications. In [81] they show an approach to rectify this weakness 

while still preserving the conceptual simplicity and good recognition performance of sparse 

representation. 

6 Comparison between Principal Approaches 

It is important to evaluate various LR FR methods based on certain evaluation criteria to have a clear 

idea on their behavior. Nowadays, LR FR methods are evaluated based on HR FR criteria and databases 

due to the lack of general criteria and databases originally developed for LR FR.  

There is currently no database for LR FR, so that for evaluations on most of the existing LR FR 

methods, face images with frontal view, neutral expression, and illumination variations are selected and 

preprocessed such as down-sampling and blurring instead of the actual LR images taken by surveillance 

cameras. At present, the widely used databases for LR FR are FERET/Color FERET [85], CMU 

PIE/CMU Multi-PIE, FRGC, and SCface. Other databases such as XM2VTS [82], UMIST [83], ORL 

[84], and KFDB [85] are also used to evaluate LR FR methods.  

The performances of LR FR methods tested on some databases mentioned above are summarized in 

figures 5, 6 and 7. FERET database mainly covers expression variation; which is relatively old 

compared with other databases. Tested on FERET, resolution-robust feature representation methods 

such as CLPMs slightly outperform recognition-oriented SR methods such as S2R2. Then, FERET is 

more suitable for simple conditions, such as single expression variation.  

FRGC and SCface are two relatively complicated databases in which recognition oriented SR 

methods obtain much better performance, although the resolution-robust feature representation method 

MDS tested on SCface is greatly superior to DSR. This result is attributed to the use of frontal view 

probe images. 

In addition, the evaluations on CMU PIE or CMU Multi-PIE demonstrate that recognition-oriented 

SR methods such as S2R2 and DSR are more easily against unconstrained variations, e.g., illumination 

and expression. However, the resolution-robust feature representation method CKE also obtains 

promising results on CMU Multi-PIE mainly with the help of the kernel trick. 

It is very difficult to rank all the methods based on the existing and widely used image-based 

standard databases. Also, no method can satisfactorily handle the LR problem in face recognition under 

all complicated variations. For example, M2TSR is the only method specially designed to deal with 

pose and illumination problem in LR classification. However, its performance on the FERET database 

with 14 × 9 is only 74.6 %, which is still far below the requirement of practical use. The performances 
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of different methods depend on different databases to some extent. Therefore, a few standard LR face 

databases are necessarily built for fair comparisons. 
 

 

Fig. 5. Performance of principal and baseline methods on FERET database. 

 

Fig. 6. Performance of principal and baseline methods on SCFace database. 

 

Fig. 7. Performance of principal and baseline methods on FRGC database. 

 

S2R2 

M2TSR 
NMCF 

RQCr 

LFD 

LDA 
Tensor 

PCA 

R 
LBP 

0

10

20

30

40

50

60

70

80

90

100

6x6 14x9 12x12 15x15 33x30

Method

Baseline

MDS 

DSR 

CKE 

PCA 
PCA 

LPP 

0

10

20

30

40

50

60

70

80

12x10 16x14 16x16

Method

Baseline

S2R2 DSR 

KCFA 

CFA 
PCA 

PCA 

0

10

20

30

40

50

60

6x6 7x6 8x8

Method
Baseline



20 Mairelys Hernández-Durán, Yenisel Plasencia-Calaña, and Heydi Méndez-Vázquez 

Other databases based on video-based real environments allow evaluating the performances of some 

LR FR methods such as CLEAR2006 [86]. Recently, some researchers attempted to build LR databases 

to simulate real world. Yao et al. [87] created a face video database, UTK-LRHM, obtained from long 

distances and with high magnifications, both indoors and outdoors under uncontrolled surveillance 

conditions. Also, they developed a wavelet transform based multi-scale processing algorithm, which 

was successful in improving recognition rate.  

Another attempt was a database named “labeled faces in the wild” (LFW), [88] containing images 

that were collected from the web. Although it has natural variations in pose, illumination, expression, 

etc., there is no guarantee that such a database can accurately capture all variations found in the real 

world. Besides, most objects in LFW only have one or two images, which might not be enough to 

conduct different face recognition experiments. That is to say, there is still no LR benchmark database 

for public comparisons at present. 

In [20] they constructed a video-based face database with uncooperative subjects in an uncontrolled 

indoor environment. They designed three group experiments for evaluating the effects of distance 

(resolution), illumination, and misalignment on the abilities of the two methods for dealing with the LR 

FR problem. In 2.0 meters distance, S2R2 and CLPMs obtain the promising identification accuracies 

(IDA vs. Rank-1) of 80 % and 87.5 %. It is noticeable that S2R2 without alignment is even inferior to the 

LR case with alignment. Thus alignment is very important for face recognition, especially for LR FR. 

From the results of many experiments reported in the literature on the real-world environment, the 

existing LR FR methods have not performed well under real-world scenarios. The representatives of LR 

FR methods such as S2R2 and CLPMs are severely affected by complicated conditions, e.g., distance, 

illumination, misalignment. In such cases, compared with S2R2, the performance of CLPMs is much 

poorer, which is probably attributed to no stable features involved in CLPMs. However, S2R2 is also 

unsuitable for real-time application mainly due to the complication of the model parameter learning. 

Briefly, the existing LR FR methods should be greatly improved so as to be used for real applications. 

Based on the evaluations on image-based standard databases and video-based real environment, we 

can have an idea on the performances of the existing LR FR methods. Misalignment and some 

environmental conditions (e.g., illumination, distance, noise) and face variations (e.g., expression, pose) 

can bring a lot of effects on LR FR. 

7 Conclusions 

LR is a challenging and interesting subarea in face recognition. After introducing the LR FR concept 

and analyzing some representative methods, we can conclude some ideas discuses above related to the 

different approaches: 

 It is necessary to create standard databases and criteria to evaluate LR FR methods 

performances, since they have to lead with databases and metrics originally designed for 

HR FR. 

 Feature SR outperforms image SR from recognition perspective. 

 The first SR techniques based on reconstruction, represent an intuitive approach to 

improve a face image, but mostly for a visual improvement because they are not designed 

from a recognition point of view.  

 To match high resolution training images with low-resolution probe images, the down- 

sampling approach in the low-resolution domain have shown to be better than applying 

SR, especially when faces are of very low resolution.  

 Resolution-robust feature methods are a recent and promising way to aboard LR approach, 

trying to obtain a unified feature space to solve the dimensional mismatch problem. 

 Sparse representation and coupled metric learning are two representatives resolution-

robust feature methods with the advantages of low computational complexity and lower 

requirement of training samples, making it more suitable for real applications. 
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 There is no an unique and better way for face image SR with recognition purpose since all 

LR FR methods have advantages and disadvantages related to particular properties of each 

one. 
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