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Abstract. The study of palmprint has become in recent years a very important biometric field since 
its wide use in forensic applications, as well as, in access control and authentication applications. In 
forensic applications, for example, palmprint have a huge impact since they appear frequently in 
crime scenes and in some cases are the only kind of latent impression found. Statistical studies show 
that 30% of the latent prints recovered from crime scenes are from palms. The research field of 
palmprint can be divided in two categories: online palmprint matching and offline palmprint 
matching. Online palmprint matching uses low resolution images (150 dpi or less) and offline 
palmprint matching uses high resolution images (500 dpi or more). In this work, a new taxonomy of 
the principal palmprint matching techniques reported in the literature corresponding to the last 
category is presented, as well as, the remaining unsolved problems detected and some possible 
research lines to be study in the future. 

Keywords: palmprint, high resolution palmprint matching, latent palmprint matching, partial 
palmprint matching, orientation field estimation in palmprints. 

Resumen. Las impresiones palmares han cobrado en los últimos años una gran importancia en la 
biometría debido a su amplio uso tanto en las aplicaciones forenses como en las aplicaciones de 
control de acceso y autenticación. En las aplicaciones forenses por ejemplo, las impresiones 
palmares aparecen frecuentemente en escenas del crimen, siendo en algunos casos el único tipo de 
huella latente encontrado. Estudios estadísticos corroboran lo anterior mostrando que el 30% de las 
impresiones latentes en escenas del crimen corresponden a palmares. El campo de investigación de 
las impresiones palmares puede ser dividido en dos categorías: cotejo online de impresiones 
palmares y cotejo offline de impresiones palmares. En el cotejo online de impresiones palmares se 
utilizan imágenes de baja resolución (150 dpi o menos) mientras que en el cotejo offline de 
impresiones palmares se utilizan imágenes de alta resolución (500 dpi o más). En este trabajo se 
presentará una nueva taxonomía de las principales técnicas de cotejos de palmares en la última 
categoría, así como, los principales problemas detectados que permanecen sin ser solucionados y 
algunas posibles líneas de investigación a ser abordadas en el futuro. 

Palabras clave: impresiones palmares, cotejo de impresiones palmares con alta resolución, cotejo 
de impresiones palmares latentes, cotejo de impresiones palmares parciales, estimación del campo 
de orientación en impresiones palmares. 
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1 Introduction 

The study of palmprint has become in recent years a very important biometric field since its wide use in 
forensic applications, as well as, in access control and authentication applications. Although fingerprint 
is the most widely used biometric trait, where some small features called minutiae are used to compare 
one fingerprint to another, it is problematic to detect the minutiae from fingers of elderly people and 
manual workers  [1]. The main advantage of palmprint is the large area of the palm that contains rich 
and useful information which makes it highly individual [2].       
     The palm is the inner region of the hand excluding the fingers. Palmprint is referred to skin’s pattern 
of the surface of the palm. The pattern of the skin on the palm is formed by the combination of ridges 
and creases. Creases are classified as principal lines, minor creases and secondary creases [3], 
secondary creases are also called wrinkles and they are much thinner and irregular than the others. 
principal lines are known as the lines of the head, life and heart (See Figure 1), they are stable features 
given they vary little over time [3]. Based on the principal lines, the palm is divided in three regions: 
interdigital, hypothenar eminence and thenar eminence. Generally the thenar eminence has the biggest 
concentration of secondary creases (See Figure 1).  

 

Fig. 1. Palmar Regions (Interdigital, Hypothenar Eminence, Thenar Eminence). Major creases: the heart line 
(blue), the head line (green), and the life line (red). Minor and secondary creases. 

     The minutiae are formed by terminations and bifurcations of ridges, so they could be extracted as a 
distinctive feature (See Figure 2), there are other types of minutia but these are the most widely used. 
Other features that can be extracted from palmprints are orientation field and density map, defined as 
the ridges orientation and ridge density in different local regions respectively. Additional features that 
could be simultaneously obtained from a palmprint can be found in [4].      

The research field of palmprint can be divided in two categories: online palmprint matching and 
offline palmprint matching (See Figure 3). Online palmprint matching uses low resolution images (150 
dpi or less) and offline palmprint matching uses high resolution images (500 dpi or more). Features like 
ridges, singular points and minutiae do not appear in low resolution images, while principal lines, 
wrinkles and texture are still present. High resolution images are usually used in forensic applications 
while low resolution images are used in civil and commercial applications due to their smaller size and 
short processing time. 



 High Resolution Palmprint Matching: A Review   3 

 
Fig. 2. Two types of minutia [5].    

 
Fig. 3. Images of low resolution (online palmprint matching) and high resolution (offline palmprint matching). 

The major techniques developed in high resolution palmprint matching are discussed in this article. 
In section 2 of this paper, some algorithms proposed in the literature to reliably extract the minutiae 
information avoiding the negative effects provoked by creases are discussed. In section 3, the palmprint 
matching techniques that only use the information relative to the minutiae position and direction are 
presented, while in section 4, multi-features high resolution palmprint matching techniques are covered. 
The previous two sections will be covering partial-to-full and latent-to-full matching approaches, 
section 5 will be covering full-to-full palmprint matching systems. Finally, in section 6 some 
conclusions are presented. In the next subsection, some particularities of the offline palmprint matching 
are introduced.  Figure 4 illustrates the proposed taxonomy. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Proposed taxonomy of the principal high resolution palmprint matching techniques. 
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1.1 High Resolution (Offline) Palmprint Matching 

As was mentioned above, offline palmprint matching uses high resolution images (500 dpi or more) and 
its scope is mainly the forensic field. The importance of palmprint in this field is corroborated by 
statistics studies that show that 30% of the latent prints recovered from crime scenes are from palms [6]. 
Therefore, latent-to-full palmprint matching algorithms are one of the biggest interests of law agencies. 
Latent-to-full palmprint matching is a challenging task due to the problems associated with the latent 
impressions. Latent impressions (See Figure 5) are only a small part of the palmprint and generally have 
poor quality and noise associated to the background surface which causes the detection of spurious 
minutiae. Furthermore latent impressions often do not contain any singular or reference point that can 
be used for the alignment. Full-to-full and partial-to-full system are used in access control and borders. 

 
Fig. 5. Two Latent Impressions.    

 
Although some algorithms for fingerprint matching could be used for palmprint matching many 

authors pointed a number of differences between palmprints and fingerprints that make those algorithms 
are unsuitable for the palmprint matching task [7, 8]. The principal differences cited are: 

• High density of creases: Although fingerprints could have some creases, generally these creases are 
very thin and their number is small. As we saw in the introduction, palmprints have a wide number of 
creases with variable width. Also generally the thenar region has a high density of creases which 
makes difficult the estimation of the ridge orientation field and therefore causes the detection of 
many spurious minutiae. 

• Palmprint Size: Since the palmprint area is much bigger than fingerprint area, the sizes of palmprint 
images are also bigger than the sizes of fingerprint images, which causes an increase in the 
preprocessing and post processing time of a palmprint image. This also leads to a major number of 
minutiae, so the matching process is computationally more expensive. For example, in [8] the authors 
pointed that VeriFinger [9], an awarded commercial matcher, can perform more than 15000 
fingerprint matches per second but only three palmprint matches per second. 

• Skin distortion: The non-linear distortion between two prints of the same palm is often very big due 
to the palmprint size and its physical structure [8]. Figure 6 shows two prints of the same palm with 
big non-linear distortion. In [8] the authors show how the skin distortion is widely present in 
palmprints principally in the thenar region. 

• Absence of the central region: In most of the latent palmprints and in those captured by a contact-
based device the central region of the palm is missing. This is also due to the physical structure of the 
palmprints. Although there is still plenty information available, this causes that the principal lines are 
not a very robust feature. Figure 7 shows two palmprints with the central region missing.  

• Difference of quality and discriminative power of the palmprints features between regions: As we 
previously mentioned the thenar eminence has the biggest concentration of creases therefore this 
region has poorer quality than the others. In [8] the authors run a study about the discriminative 
power of the principal palmprint features (minutiae, orientation field, density map) in different 
regions of the palm, found that the features have different discriminative power between regions. 
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Figure 8 was taken from [8] and shows the different discriminative power of the features studied 
between regions. The minutiae have the lowest discriminative power around the thenar region; this is 
caused by the high density of creases of this region which affects as we later show the minutiae 
extraction and the high nonlinear distortion of this region. This study also shows that the density map 
is a discriminative feature for palmprint recognition and also that it has consistent discriminative 
power between regions. Furthermore, in [10] the authors also run some tests by matching different 
regions manually segmented with MegaMatcher 4.0 SDK [11] obtaining EERs of 0.89%, 1.18% and 
6.57% for hypothenar, interdigital and thenar regions respectively. 

    Therefore, the algorithms designed for palmprint must take into account the above differences and 
also exploit the intrinsic characteristics of palmprints. For example, in [10] the authors propose the use 
of logistic regression to fusion the different regions scores obtaining an EER of 0.25% compared to 1% 
of full-to-full comparison.  

 

Fig. 6. Two prints of the same palm with big non-linear distortion caused by different pressures. The 
squares show an example of an area with non-linear distortion between the prints. 

 

Fig. 7. Two palmprints with the central region missing. 
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Fig. 8. Different discriminative power of different features between different regions: a) minutiae, b) 
orientation field, c) density map. The brighter regions are the regions with most discriminative power 
by feature [8]. 

2 Ridges Extraction Algorithms 

Because the minutiae are formed by the bifurcations and terminations of ridges, the extraction of ridges 
is a crucial step on the minutiae detection algorithms. As we previously mentioned, the presence of a 
large number of creases in palmprints makes difficult the estimation of the ridge orientation field. There 
is a wide number of algorithms to estimate the orientation field in fingerprints that can be classified in 
three groups [5]:  

• Gradient based approaches: These approaches are under the premise that the gradient phase angle 
denotes the maximum intensity change and therefore the direction of a ridge is orthogonal to the 
gradient phase angle [5], but this is not quite true in areas with high density of creases because the 
creases can behave like ridges and therefore it is quite difficult to distinguish between them based 
only in a directional criterion.  

• Slit and projection based approaches: These approaches are based on the method proposed in [12]. 
The basic idea is that, the sum of the gray values is small for pixels belonging to ridges and high for 
pixels belonging to valleys. But in palmprints for pixels belonging to creases, the sum of the gray 
values is also high. Also, since creases and ridges cross each other, the sum of the gray values of 
pixels belonging to ridges is not too small, and in areas with high density of creases this value tends 
to be high also.  
Orientation estimation in the frequency domain: These methods assume that except for singular 
points any local region has a consistent orientation and frequency, and therefore the spectrum in the 
frequency domain has two peaks that indicate the two parallel ridges that cross over the region, but 
once again this is not quite true in a local region of a palmprint with high density of creases because 
the creases cause the detection of multiple peaks.   

     
Fig. 9. The ridge skeleton produced by VeriFinger 4.2 in a palmar region with many creases.  
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The global model based methods for the regularization of the fingerprint orientation have also some 
problems when they are applied to palmprints based principally in that the ridge pattern in palmprints 
has no global consistency. Another way of saying this is that in palmprints different areas of an image 
have different patterns.  

Figure 9 shows how VeriFinger, one of the most successful fingerprint recognition software [9], fails 
in estimating the ridge orientation field in a palmar area with high density of creases.  

To overcome the above problems, in [13] a method that considers the elimination of creases was 
proposed as a way to provide a more robust estimate of the orientation field. The basic idea is to select a 
group of ridge candidates from a local image by fitting it to a ridge model. Then the correct candidates 
are selected on the basis of their continuity with the neighbor candidates which most likely are ridges 
according to the model. The proposed model to fit to the local image is a 2-dimensional sine wave. 

Since a pair of parallel ridges crossing over a local image corresponds to two peaks in its power 
spectrum, the local image is fit to the model by detecting such peaks. As some peaks also represent 
creases, more than two peaks are detected for each local image to obtain a group of candidates. The 
peaks are detected in order of their amplitude. Figure 10 shows how not always the strongest sine wave 
represents the ridges of a local image.   

For each small local area of M x M pixels a local region ℎ𝐼𝑖,𝑗(𝑥,𝑦) of L x L pixels (L >M) is defined 
as:  

  

𝑔𝐼𝑖,𝑗(𝑥,𝑦) =  �−
𝐿
2

+ 1 ≤ 𝑥,𝑦 ≤
𝐿
2
�, 

 

(1) 

 
𝑑𝑐𝐼𝑖,𝑗 = � � 𝑤(𝑥,𝑦)𝑔𝐼𝑖,𝑗(𝑥,𝑦)

𝐿/2

𝑦=−𝐿2+1

𝐿/2

𝑥=−𝐿2+1

,   (2) 

  
ℎ𝐼𝑖,𝑗(𝑥,𝑦) = 𝑤(𝑥,𝑦)�𝑔𝐼𝑖,𝑗  −  𝑑𝑐𝐼𝑖,𝑗�, 
 

(3) 

where 𝑤(𝑥,𝑦) is a window Gaussian function. The power spectrum of ℎ𝐼𝑖,𝑗(𝑥,𝑦) is denoted 
as  𝐻𝐼𝑖,𝑗(𝑥,𝑦), the 𝐾 peaks are detected in �𝐻𝐼𝑖,𝑗(𝑥,𝑦)�2. 

 
Fig. 10.  The first six sine waves taken by their amplitudes in a local palmar image. In (b) and (c) the ridges are 
represented by the third sine wave [7]. 
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 The parameters of a peak located at the position (𝑥𝐻 ,𝑦𝐻) are calculated as follows: 
  

𝑎 = 2�𝐻𝐼𝑖,𝑗(𝑥𝐻 ,𝑦𝐻)� , 
 

(4) 

 
𝑝ℎ =  tan−1

𝐼𝑚�𝐻𝐼𝑖,𝑗(𝑥𝐻 ,𝑦𝐻)�
𝑅𝑒�𝐻𝐼𝑖,𝑗(𝑥𝐻 ,𝑦𝐻)�

 , (5) 

  

𝑑 =  tan−1
𝑥𝐻
𝑦𝐻

 , 

 

(6) 

 
𝑓 =

�(𝑥𝐻)2 + (𝑦𝐻)2

𝐿
 , 

 
(7) 

 
𝑒 =

4𝜋2𝜎4

𝐿2
� 2�𝐻𝐼𝑖,𝑗(𝑥𝐻′ ,𝑦𝐻′ )�2

(𝑥𝐻
′ ,𝑦𝐻

′ )∈𝑉

,   (8) 

where 𝑎,𝑝ℎ,𝑑,𝑓 and 𝑒 are the amplitude, phase, direction, frequency and energy respectively, 𝜎 is the 
variance of the Gaussian function 𝑤(𝑥,𝑦) and 𝑉 is the set of the 8-neighbor pixels to (𝑥𝐻 ,𝑦𝐻). The 
local region expressed by 𝑎,𝑝ℎ,𝑑  and 𝑓 is: 

 
𝐺(𝑥,𝑦) = 𝑎 cos�𝑓(𝑥 cos𝑑 + 𝑦 sin𝑑)� − 𝑝ℎ . (9) 

The next step is the detection of which candidates in some local areas are most likely ridges. Such 
candidates are called “high reliability candidates” and those areas “high reliability areas”. Then, those 
candidates in the other areas having high continuity with the high reliability candidates are selected as 
ridges as well. First, all the first candidates of each local area are marked as ridges; the authors argue 
that the first candidate has the highest likelihood of being a ridge according to local information alone. 
This is true only in those local areas that do not have creases. Since as they pointed, the local 
information of the ridges generally does not have continuity with that of creases, groups of local areas 
are detected based on the continuity of the local information of its first candidates. Figure 11 shows a 
block diagram of the candidate selection process.   

 
Fig. 11. Candidate selection process [13]. 

  



 High Resolution Palmprint Matching: A Review   9 

The connectivity or continuity of the local information of the first candidates in two adjacent areas is 
evaluated using the following features: 

 

𝐽𝑑𝑖𝑟 = ���𝑑1
𝐼𝑖,𝑗 − 𝑑1

𝐼𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟� +
𝜋
2
�  𝑚𝑜𝑑 𝜋 −

𝜋
2�

 , (10) 

 

𝐽𝑝𝑖𝑡𝑐ℎ = �
1

𝑓1
𝐼𝑖,𝑗
−

1

𝑓1
𝐼𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟� , 

(11) 

 
𝐽𝑝ℎ = ��𝑝ℎ1

𝐼𝑖,𝑗 − 𝑡 �𝑝ℎ1
𝐼𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟� + 𝜋�  𝑚𝑜𝑑 2𝜋 − 𝜋� , 

 
(12) 

here  𝐽𝑑𝑖𝑟,  𝐽𝑝𝑖𝑡𝑐ℎ and  𝐽𝑝ℎ are the difference in the direction, the pitch and the phase respectively, 
𝑡 �𝑝ℎ1

𝐼𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟� is the translation formula to the coordinate system of 𝑝ℎ1
𝐼𝑖,𝑗  and is defined as:  

𝑡𝑖,𝑗 �𝑝ℎ𝑛
𝐼𝑖+1,𝑗� = �𝑝ℎ𝑛

𝐼𝑖+1,𝑗 − 2𝜋𝑀𝑓𝑛
𝐼𝑖+1,𝑗 cos𝑑𝑛

𝐼𝑖+1,𝑗 + 𝜋�𝑚𝑜𝑑 2𝜋 −  𝜋 , 
 

(13) 

𝑡𝑖,𝑗 �𝑝ℎ𝑛
𝐼𝑖,𝑗+1� = �𝑝ℎ𝑛

𝐼𝑖,𝑗+1 − 2𝜋𝑀𝑓𝑛
𝐼𝑖,𝑗+1 sin𝑑𝑛

𝐼𝑖,𝑗+1 + 𝜋�𝑚𝑜𝑑 2𝜋 −  𝜋 . (14) 
 

When 𝐽𝑑𝑖𝑟,  𝐽𝑝𝑖𝑡𝑐ℎ and  𝐽𝑝ℎ are below of three predefined thresholds the candidates are considered 
connected. Now the connected candidates are clustered and those clusters are evaluated to be classified 
as high reliability areas. The features used to evaluate the clusters are: 

1. The number of local areas included in a local area group (𝑁𝑙). 
2. The ratio of the energy of all the first candidates to the total energy of the local areas included in the 

clusters: 

 

𝑅𝑐𝑙 =
∑ 𝑒1

𝐼𝑖,𝑗
(𝑖,𝑗)∈𝐶𝑙

∑ 𝑒𝑡
𝐼𝑖,𝑗

(𝑖,𝑗)∈𝐶𝑙

 , (15) 

 

𝑒𝑡
𝐼𝑖,𝑗 =

4𝜋2𝜎4

𝐿2
� � �𝐻𝐼𝑖,𝑗(𝑥𝐻 ,𝑦𝐻)� ,2

𝐿/2

𝑦𝐻=−
𝐿
2+1

𝐿/2

𝑥𝐻=−
𝐿
2+1

 (16) 

 
where 𝐶𝑙  is the 𝑙-th cluster. Clusters with 𝑁𝑙 = max (𝑁) or with 𝑁𝑙 and 𝑅𝑐𝑙  bigger than two predefined 
thresholds are classified as high reliability clusters and therefore their first candidates are classified as 
ridges. To use these features the authors argued that because of connectivity, the size of clusters in areas 
without creases is bigger than in those areas with high density of creases. This might have some 
problems in palmprints with high density of creases in the whole image and very poor quality, as is the 
case of the latent palmprints, because the ridge areas do not tend to grow much and in palmprint areas 
with large and strong creases the creases region might grow too much and be classified therefore as a 
ridge region. Figure 12 shows examples of those cases.  
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Fig. 12. Two latent palmprints with high density of creases and poor quality and one palmprint area with large and 
strong creases. 

The final step is to select which of the candidates in clusters that were not selected as high reliability 
clusters are ridges, based on the connectivity with those in high reliability clusters. To do this a region 
growing algorithm is applied using the following features:  

1. The ratio of the energy of a candidate to the energy of the others: 

 

𝑅𝑘
𝐼𝑖,𝑗 =

𝑒𝑘
𝐼𝑖,𝑗

∑ 𝑒𝑛
𝐼𝑖,𝑗𝐾

𝑛=1

 ,  

 

(17) 

where K is the number of selected peaks. 

2. The order of candidate k. 
3. Average difference of the candidate phase: 

𝐷𝑝ℎ𝑘
𝐼𝑖,𝑗 =

1

�𝑈𝑁
𝐼𝑖,𝑗�

� ��𝑡𝑖,𝑗 �𝑝ℎ
𝑢
𝐼𝑖′,𝑗′

𝐼𝑖′,𝑗′ � − 𝑝ℎ𝑘
𝐼𝑖,𝑗 + 𝜋�𝑚𝑜𝑑 2𝜋 −  𝜋�  ,

𝑢
𝐼𝑖′,𝑗′∈𝑈𝑁

𝐼𝑖,𝑗

 (18) 

where 𝑈𝑁
𝐼𝑖,𝑗  is a set of definite candidates in the adjacent areas to 𝐼𝑖,𝑗.  

4. Average difference of the candidate direction: 

𝐷𝑘
𝐼𝑖,𝑗 =

1

�𝑈𝑆
𝐼𝑖,𝑗�

� ���𝑑
𝑢
𝐼𝑖′,𝑗′

𝐼𝑖′,𝑗′ − 𝑑𝑘
𝐼𝑖,𝑗� +

𝜋
2
�𝑚𝑜𝑑 𝜋 −

𝜋
2�

𝑢
𝐼𝑖′,𝑗′∈𝑈𝑆

𝐼𝑖,𝑗

 , (19) 

where 𝑈𝑆
𝐼𝑖,𝑗 is a set of definite candidates in the areas which satisfy (𝑖 − 𝑖′)2 + (𝑗 − 𝑗′)2 ≤ 𝑆. The 

definite candidate with the minimum value of  𝐷𝑘
𝐼𝑖,𝑗  is selected from those candidates that 

satisfy   𝐷𝑝ℎ𝑘
𝐼𝑖,𝑗 < 𝑇𝐻𝑝ℎ, 𝑘 < 𝑇𝐻𝐾  𝑎𝑛𝑑 𝑅𝑘

𝐼𝑖,𝑗 > 𝑇𝐻𝑟. Here 𝑇𝐻𝑝ℎ, 𝑇𝐻𝐾 and 𝑇𝐻𝑟 are predefined thresholds. 
In [7] Jain et al. mention two drawbacks of the above procedure: 

1. Crease regions may be incorrectly classified as ridge regions and are grown in the region growing 
procedure. 

2. The enhanced image is not smooth due to the blocking effect which produces spurious minutiae.  

Two main modifications are proposed to overcome the above drawbacks: 

1. The selected regions are grown in the seed stage (high reliability clusters) separately and then one 
region is selected as a ridge region and merged with those compatible with it. 
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2. To solve the blocking effect problem, the ridge direction and frequency obtained are smoothed and 
Gabor filters are used to enhance the palmprint image. 

There are some stages in the procedure described in [7] that slightly differs from their equivalent in 
[13]. Those differences are: 

1. The DC component is not subtracted to the local image before multiplying it by the Gaussian window 
function. 

2. To determine if two waves are continuous, instead of using the phase difference of the two waves, 
the authors use the difference of their normalized gray-scale value: 

𝐷𝑔𝑠 =
1

16
� � �

𝐺1(𝑥,𝑦)
𝑎1

−
𝐺2(𝑥,𝑦)
𝑎2

�
𝐿/2

𝑦=−𝐿2+1

𝐿/2

𝑥=−𝐿2+1

 . (20) 

3. To form the groups of connected first waves they do not use all the first candidates, instead of this the 
reliability of the first candidates is calculated as  𝑎1/(𝑎1 + 𝑎2)  where 𝑎1 y 𝑎2 are the first and the 
second candidate. Those candidates with reliability bigger than a predefined threshold are selected to 
form the groups. As was previously mentioned, the groups are no classified as crease regions and 
ridge regions. 

4. For the region growing algorithm, only the groups with cardinality bigger than a predefined threshold 
are used as seeds instead of using all of them. Those seeds are organized in descending order 
according to their size. Each seed is then grown by turn and separately from the others, this means 
that for each iteration they assume that there is only one seed. 

5. In the region growing algorithm those candidate waves that are continuous with the adjacent 
candidates in the current region are selected iteratively. If a candidate selected is a first candidate and 
also belongs to a seed not analyzed yet, then that seed is invalidated but previously merged with the 
current region. After this process they have obtained a set of regions. 

6. The regions obtained are sorted in decreasing order according to the number of reliable first waves. 
The first region is selected as a ridge region and copied to the final region. The other regions with no 
overlapped blocks with the final region are also copied to the final region. Those regions with 
overlapped blocks are copied to the final region only if the selected waves in the overlapped blocks 
are the same. 

Although the experiments show that with this procedure performs better than the procedure described 
in [13], the authors claim that there are still some problems in noisy high curvature areas. We can 
also note the following drawbacks associated to the region growing procedure:  

1. If the region with the most reliable first waves was obtained from a crease seed, then the procedure 
fails in detecting the ridge region. 

2. If a region obtained from a crease seed has no overlapped blocks with the ridge regions, then this 
region is copied to the final region and therefore the final region contains creases. 
 
Despite the fact that the above algorithms can identify ridges in region with creases, both of them 

still have some problems in regions with high density of creases. In [14] a new method to reliably 
estimate the initial orientation field even in regions with high density of creases was presented based on 
the Radon transform. The reason behind the use of the Radon transform is that the ridge direction is 
slowly-varying in a local area and therefore it can be approximated by a straight line. The problems 
with this method is that it is computational expensive so they propose to first detect the creases and 
then, in those areas with low density of creases apply the algorithm proposed in [7] and in the areas 
with high density of creases apply the algorithm based on the Radon transform. Finally, both areas are 
merged by using the region growing algorithm proposed in [7]. The Figure 13 taken from [14] shows 
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that the radon transform works better in a region with more creases than the procedure based on the 
DFT described in [7]. 

 
Fig. 13.  Comparison between the method based on the DFT described in [7] and the procedure described in [14] 
based on the Radon transform in regions with high density of creases: (a) and (f) are the original images, (b) and 
(g) are the initial orientation fields estimated by [7], (c) and (h) are the initial orientation fields estimated by [14], 
(d) and (i) are the final orientation fields estimated by [7], (e) and (j) are the final orientation fields estimated by 
[14]. This figure was taken from [14]. 

Firstly the image is divided in blocks of 16X16 and the algorithm proposed in [15] is utilized to 
extract creases from this blocks. The quality value for each block is computed as the sum of the crease 
energy values for all the creases present inside a 64X64 pixel neighboring region. The DFT method 
proposed in [7] is applied for the neighboring region whose crease energy is smaller than a threshold. 
At this point for each selected peak (𝑢𝑖, 𝑣𝑖)  the direction (phase) and the ridge density (frequency) are 
computed. To compute the direction they apply the next formula that differ from the formula described 
in [7]: 

 

𝜃𝑖 = tan−1 �
𝑢𝑖
𝑣𝑖
� −

𝜋
2

  . (21) 

     The formula to compute the ridge density is the same as in [7]. For the neighboring regions whose 
crease energy is bigger than certain threshold, a method based on the Radon transform is proposed. 
Since the original Radon transform is performed at the whole image and they just want to apply it on a 
small local area, they utilize the modified finite Radon transform described in [15].  

First, all the pixels in the neighboring area are scanned, and those whose grayscales are smaller than 
a threshold are selected. For each pixel (𝑥𝑖,𝑦𝑖) selected a normalization is performed in a circular 
region ∆ of radius 27 and centered at (𝑥𝑖, 𝑦𝑖) by subtracting the mean of the grey levels from every 
pixel. Next the modified finite Radon transform is applied as: 

 

𝑟(𝜃; 𝑥𝑖 ,𝑦𝑖) = � 𝐼(𝑥,𝑦)′𝛿((𝑥 − 𝑥𝑖) cos𝜃 + (𝑦 − 𝑦𝑖) sin𝜃)
(𝑥,𝑦)𝜖∆

 , (22) 

 
where 𝐼(𝑥,𝑦)′ is the normalized grey level at pixel (𝑥, 𝑦) and 𝜃 is the direction of the line. Let 𝜃0 the 
direction that minimizes 𝑟(𝜃; 𝑥𝑖,𝑦𝑖), then a confidence value is associated to the estimated value given 
by: 

 (23) 
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𝑐𝑖(𝑥𝑖 ,𝑦𝑖) = − 𝑟(𝜃0; 𝑥𝑖,𝑦𝑖) . 
 

 
Since all the points with the same direction in the neighboring area ∇ should be taken into 

consideration, the aggregate confidence value of each direction is computed as: 
 

𝑐𝑏(𝜑) = � 𝑓(𝑐0(𝑥,𝑦))𝐼(𝜃0(𝑥,𝑦) = 𝜑)
(𝑥,𝑦)∈∇

 , 

 
(24) 

𝑓(𝑐) = �
0   𝑖𝑓 𝑐 ≤ 𝑐𝑇
𝑐   𝑖𝑓 𝑐 > 𝑐𝑇  ,  

 
    (25) 

 
where 𝑐𝑇 is the truncation threshold that was empirically set as 200 in their experiments. After this, the 
algorithm described in [16] is applied to extract the ridge density along each one of the k directions with 
the top confidence values. Finally the region growing algorithm described in [7] is used to select the 
final orientation. Two ridges (𝜃𝑎,𝑓𝑎) and (𝜃𝑏 ,𝑓𝑏) are continuous if they meet the following conditions: 

�
|𝜃𝑎 − 𝜃𝑏| ≤

𝜋
6

�
1
𝑓𝑎
−

1
𝑓𝑏
� ≤ 3

  . (26) 

 
Even though the authors obtained better results with this method than the other one, the same 

drawbacks associated to the region growing algorithm in [7] are still present. Furthermore another 
concern with this method in palmprints with high density of creases (i.e. palmprints from elderly people 
and manual workers or latent impressions from the thenar region), is the high computational cost of the 
Radon transform.  

In conclusion ridge extraction in palmprints is a very important problem that has not be completely 
solved yet. The algorithms of the state of the art present some major drawbacks related mainly to the 
presence of many and wide creases and to the region growing algorithm used as a post smooth 
algorithm. One way to address these issues is by a better and robust selection of the ridge candidates in 
each local area. Thus a much deeper study is needed in this area to overcome the above problems.  

3 Partial Palmprint Matching Methods Based Only on Minutiae Position 
Information 

The methods based only on Minutiae Position Information (coordinates and direction) are very 
important since as was previously pointed, the latent palmprint images are of poor quality and therefore 
in many cases the features extraction from those is performed manually by forensic experts. Another 
reason is that the other types of features are not currently standardized, so they have limited use in a 
global and interoperable biometric system. 

The method described in [17] computes the local matching based on the local structure of the 
minutiae and the global similarities between two minutiae sets, then both scores are combined to obtain 
a final similarity measure between the two palmprints. 

To construct the local structure of each minutia 𝑝(𝑥, 𝑦,𝜃) (𝑥,𝑦 are the abscissa and the ordinate of 
the minutiae and 𝜃 is the direction of the minutiae) a local polar coordinate system is built by setting as 
the origin and the axis direction the position and the direction of the minutiae respectively. The authors 
argue that the use of the polar coordinate system could describe the nonlinear distortion better, and it is 
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easier to handle the translation and rotation of the image. Then a local eigenvector of length 3(𝑛 + 1)  
is constructed with the 𝑛-nearest neighborhood minutiae according to their polar radius to the origin. 
The eigenvector is defined as: 

 
(𝑥,𝑦,𝜃, 𝑟1,𝜑1,𝛼1, 𝑟2,𝜑2,𝛼2, … , 𝑟𝑛,𝜑𝑛,𝛼𝑛) , (27) 

 
𝑟𝑖 = �(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2  , 

(28) 

 

 𝜑𝑖 = tan−1 �
𝑦𝑖 − 𝑦
𝑥𝑖 − 𝑥

� , (29) 

 
𝛼𝑖 = 𝜃𝑖 − 𝜃 , 

 
(30) 

where 𝑟𝑖 is the polar radius, 𝜑𝑖 is the polar angle and 𝛼𝑖 is the relative direction that is to say the 
difference of the directions. The neighborhood minutiae are sorted in ascending order according to the 
polar radius. The direction of a minutia is defined as the angle between the tangent to the ridge line at 
the minutia position and the horizontal axis (Figure 14).  

Fig. 14. The directions of a ridge ending minutia (a) and a bifurcation minutia (b) [5]. 

The matching score between two local structures is the number of matching minutiae in its 
neighborhood. Two minutiae i and j match each other if the following conditions are met: 

 
�𝑟𝑖 − 𝑟𝑗� <  𝛿1 ,  (31) 

 
�𝜑𝑖 − 𝜑𝑗� <  𝜀1 , 

(32) 

 
�𝛼𝑖 − 𝛼𝑗� <  𝛾1 . (33) 

       
 The matching extent of the two neighbor minutiae is defined as: 

 
𝑀𝑙(𝑖, 𝑗) = �𝑟𝑖 − 𝑟𝑗� + 𝜇1�𝜑𝑖 − 𝜑𝑗� + 𝜇2�𝛼𝑖 − 𝛼𝑗� ,  

 
(34) 

where 𝜇1 and 𝜇2 are the corresponding weights. This matching extent is used to introduce the matching 
minutiae queue of the local structure. Since the local structure with the highest score does not have to be 
the truly matching minutia, for each minutia in the template palmprint the method provide m candidates 
of the matching minutiae based on the average of the similar extent of the matched minutiae in the local 
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structure matching. Now, before carrying out the global matching the global datum mark is confirmed 
for the coordinate’s calibration.  

Firstly, a new template minutiae set and a new compared minutiae set are constructed with all the 
candidates pairs of matching. Then a matrix 𝐿𝑀𝑥𝑁  where the element 𝑙𝑖,𝑗 is the matching minutiae 
number taking the minutiae 𝑖 and 𝑗 as the temp datum marks and building global feature eigenvectors 
around of then is obtained. The corresponding minutiae pair which has the biggest matching minutia 
number is selected as the global datum mark.  

The global matching is performed using the old minutiae sets, but first the coordinates calibration of 
all the minutiae is performed in the compared palmprint using the global datum marks. Firstly, the 
translation factors ∆𝑥,∆𝑦 and the rotation factor 𝛼 are computed using the global datum marks and then 
the minutiae are calibrated obtaining a new compared set 𝐴′. The transformation formula is defined as: 

⎣
⎢
⎢
⎡𝑥𝑖

′

𝑦𝑖′

𝜃𝑖′
1 ⎦
⎥
⎥
⎤

= �

cos𝛼 − sin𝛼 0 ∆𝑥
sin𝛼 cos𝛼 0 ∆𝑦

0 0 1 𝛼
0 0 0 1

� �

𝑥𝑖
𝑦𝑖
𝜃𝑖
1

� . (35) 

      The global matching is then performed using the new compared set  𝐴′ and the template set B. A 
minutia 𝑖 ∈ 𝐴′ match with a minutia  𝑗 ∈ 𝐵 if the following conditions are met: 

 
�𝑥𝑖 − 𝑥𝑗� < 𝛿2 ,  (36) 

 
�𝑦𝑖 − 𝑦𝑗� < 𝛾2 , 

(37) 

 
�𝜃𝑖 − 𝜃𝑗� < 𝜀2 . 

 
(38) 

When one minutia matches with many others, the matching minutia pair with the smallest matching 
extent is chosen. The matching extent of two minutiae in the global matching phase is defined as: 

 
𝑀𝑔(𝑖, 𝑗) = �𝑥𝑖 − 𝑥𝑗� + �𝑦𝑖 − 𝑦𝑗� + 𝜇3�𝜃𝑖 − 𝜃𝑗� , 

(39) 

 
here 𝜇3 is weight value. The final score is computed by the following formula: 

 

𝑆 = 𝑎 ∗ 𝑆2 + 𝑏 ∗�𝑆1𝑖
𝑆2

𝑖=0

+ ��𝑑 − 𝑐𝑆3𝑖� ,
𝑆2

𝑖=0

 

 

(40) 

where 𝑆1𝑖  is the matching number of neighborhood minutiae in the local structure of the matching pair 𝑖, 
𝑆2 is the number of matching minutiae pairs in the global matching phase, 𝑆3𝑖  is the difference of each 
matching pair with the coordinate transformation factor on the minutiae sets, 𝑎, 𝑏, 𝑐, 𝑑 are weight 
values. Finally, the authors propose to use the reliability information of a minutia based on the quality 
of its position in the palmprint as a weight parameter to modify the final score.  

This paper was improved by the same research group in [18]. In the step of constructing the local 
structure the formula to obtain the polar angle is modified; the new formula is as follows: 

 

𝜑𝑖 = �
180
𝜋

tan−1
𝑦𝑖 − 𝑦
𝑥𝑖 − 𝑥

+ 360�%360 .  

 

(41) 
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     The selection of the global datum mark is done by selecting each candidate pair as a temporary 
datum mark, performing coordinate transformation and finally taking the pair that maximize the next 
formula:  

 

𝐶𝑑𝑖𝑓𝑓 =
∑ �𝑐0 − (𝑐1∆𝑥𝑖 + 𝑐2∆𝑦𝑖 + 𝑐3∆𝜃𝑖)�𝑁
𝑖=1

𝑁
  ,  

 

(42) 

where N is the matching minutiae number and 𝑐0, 𝑐1, 𝑐2, 𝑐3 are weight parameters. After performing the 
coordinate transformation using the global datum mark the global matching is computed. The difference 
between two minutiae in the global matching phase is defined as: 

 

𝐺_𝑑𝑖𝑓𝑓𝑖 = 𝑔0 + 𝑔1 ∗ 𝑀𝑖 − 𝑔2 ∗ �
𝑐1
𝑐2
𝑐3
��

∆𝑥𝑖
∆𝑦𝑖
∆𝜃𝑖

� , 

 

(43) 

here 𝑔0, 𝑔1 and 𝑔2 are weight values. The final score is computed as: 

𝑆 =
∑ 𝐺_𝑑𝑖𝑓𝑓𝑖𝑛
𝑖=1
𝐺𝑀𝐴𝑋 ∗ 𝑛

∗ 𝑀𝐴𝑋 ,  (44) 

where 𝑛 is the minutia number in the template palmprint, 𝐺𝑀𝐴𝑋 is the maximum value of 𝐺_𝑑𝑖𝑓𝑓 and 
𝑀𝐴𝑋 is the maximum value of S. The above approaches are not very robust to distortion and spurious 
minutiae. Consequently the results reported in the experiments are very poor in partial-to-full palmprint 
matching. 

In [19] a latent-to-full palmprint high resolution matching method more robust to distortion and 
spurious minutiae than the previous was presented, based in a similar approach for fingerprint [20] that 
use radial triangulation to modeling the minutiae local structure. A local structure based on radial 
triangulation is showed in Figure 15 that was taken from  [19].  

 
Fig. 15. A local structure of a minutia based on radial triangulation [19]. 

Given a minutia 𝑝(𝑥,𝑦,𝜃) called centroid, the eigenvector of its local structure with 𝑘 minutiae 
based on radial triangulation is described as: 

  
𝐿𝑆 = �𝑥,𝑦,𝜃,𝑉1,𝑅1,𝐿1,2,𝑆𝑇1,2,𝑉2,𝑅2,𝐿2,3, 𝑆𝑇2,3 …𝑉𝑘,𝑅𝑘 ,𝐿𝑘,0, , 𝑆𝑇𝑘,0� , 

 
(45) 

where 𝑉𝑘 is the vertex of the minutia 𝑘, 𝑅𝑘 is the radius of minutia 𝑘 to the centroid, 𝐿𝑘,𝑘+1 is the length 
of the polygon side between minutia 𝑘 and minutia 𝑘 + 1 and 𝑆𝑇𝑘,𝑘+1 is the area of the triangle defined 
by the minutiae 𝑘, 𝑘 + 1 and the centroid. Each vertex 𝑉𝑘 of the polygon is transformed into the polar 
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coordinate system of the centroid in the same way as in [18], they only modified the relative direction 
formula as follows: 

 
𝛼𝑘 = �(𝜃𝑘 − 𝜃) + 360�%360 . 

 
(46) 

In the local matching stage local minutiae sets of 𝑁 minutiae are firstly selected to build the radial 
triangulation structures. The selection is done by sorting the minutiae in ascending order of the 
distances to the origin of the coordinate system. The minutia nearest to the origin and the 𝑁 − 1 
minutiae nearest to it are selected.  The process is repeated considering the minutiae not selected until 
the number of remaining minutiae is less than 𝑁. Then for each set of 𝑁 minutiae a radial triangulation 
structure is constructed.  

A pair of local structures is considered a matched pair when the following conditions are met:  
 

1
𝑁2���(𝜌𝑖 cos𝜑𝑖 − 𝜌𝑘 cos𝜑𝑘)2 − (𝜌𝑖 sin𝜑𝑖 − 𝜌𝑘 sin𝜑𝑘)2

𝑁

𝑘=1

𝑁

𝑖=1

≤ 𝐷𝑉0 ,  (47) 

 

1
𝑁2��|𝑅𝑖 − 𝑅𝑘|

𝑁

𝑘=1

𝑁

𝑖=1

≤ 𝐷𝑅0 , (48) 

 

1
𝑁2��|𝐿𝑖 − 𝐿𝑘|

𝑁

𝑘=1

𝑁

𝑖=1

≤ 𝐷𝐿0 , 
(49) 

 

1
𝑁2��|𝑆𝑇𝑖 − 𝑆𝑇𝑘|

𝑁

𝑘=1

𝑁

𝑖=1

≤ 𝐷𝑆𝑇0 ,  

 

(50) 

where the minutia indexed by 𝑖 are the minutiae of the local structure of the latent print and those 
indexed by 𝑘 are the minutiae of the local structure of the full print, 𝐷𝑉0, 𝐷𝑅0, 𝐷𝐿0 and 𝐷𝑆𝑇0 are the 
average values for all the local structure pairs. The similarity between two minutiae (𝑙,𝑓) in the paired 
structure is defined as:  

 

𝑆𝑚(𝑙, 𝑓) =
1
𝑁2 ∑ ∑ �(𝜌𝑖 cos𝜑𝑖 − 𝜌𝑘 cos𝜑𝑘)2 − (𝜌𝑖 sin𝜑𝑖 − 𝜌𝑘 sin𝜑𝑘)2𝑁

𝑘=1
𝑁
𝑖=1

��𝜌𝑙 cos𝜑𝑙 − 𝜌𝑓 cos𝜑𝑓�
2 − �𝜌𝑙 sin𝜑𝑙 − 𝜌𝑓 sin𝜑𝑓�

2
  .    

 

(51) 

 
The pairs of minutiae with the maximum value of similarity are marked as candidates. The ten 

minutiae pairs with the highest similarity are used to align the two sets of minutiae. Then in the global 
matching phase all the minutiae pairs are examined and those closest to each other in location and 
direction are deemed as the matched minutiae pairs.  The final score is computed by the following 
formula similarly to [7]: 

 

𝑆 =
𝑁𝑀

𝑁𝑀 + 20
∗ 𝑆𝐷 ∗

𝑁𝑀
𝑁𝑀 + 𝑁𝐿

∗
𝑁𝑀

𝑁𝑀 + 𝑁𝐹
 ,  

 

(52) 
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where 𝑁𝑀 is the matched minutiae number, 20 is an experience value of the minimum number of 
matched minutiae for genuine comparison referred to [7], 𝑆𝐷 is the average similarity of radial 
triangulation structures for all the matched minutiae, 𝑁𝐿 and 𝑁𝐹 denote the number of unmatched 
minutiae in latent and full palmprints. 

This approach was improved by the same authors in [21]. They argued that their previous approach 
has the following unresolved problems: 

1. The discriminative power of the similarity based on radial triangulation structure is not stable. 
2. To select more accurate calibration centers, finer alignments based on global information is needed.  
3. Learning based comparison score computation is needed to better distinguish between genuine and 

imposter. 
 
In [21] their previous approach is improved by using the relaxation technique for point pattern 

comparison and use logistic regression learning for the final score computation. A new approach for the 
palmprints alignment is also introduced. The relaxation is used to modify the formula (51) as follows: 

 

𝑆𝑚(𝑙,𝑓) =
1

𝑁 − 1
�〈max [𝜗��𝛿𝑙,𝑓(𝑝, 𝑞)��  |  𝑞 ≠ 𝑙 ]〉
𝑝≠𝑙

 , 

 

(53) 

where 𝛿𝑙,𝑓(𝑝, 𝑞) denotes the position difference of 𝑝 and 𝑞 when l is mapped into f and 𝜗(𝑥) =
1 (1 + 𝑥2)⁄ .  

To perform the alignment, subsets of L minutiae are selected from the centroid set of the full 
palmprint, and from the latent palmprint centroid set only one subset of L minutiae. L is the number of 
radial triangulation structures in the latent palmprint. The selection is done using the same procedure 
that was used to select the sets of N minutiae for the local structures construction. Then for each set a 
simplified radial triangulation structure is constructed. For each simplified radial triangulation structure 
in the full palmprint the similarity between its centroids 𝑐𝑓𝑛  and the centroids of the latent palmprint 𝑐𝑙𝑚 
is computed by applying the formula (53) to centroids. Then the support 𝑝(𝑐𝑙𝑚 , 𝑐𝑓𝑛) of the centroid pair 
gives to the structure pair is calculated by: 

 

𝑝�𝑐𝑙𝑚 , 𝑐𝑓𝑛� =
𝑆𝑚�𝑐𝑙𝑚 , 𝑐𝑓𝑛�

∑ 𝑆𝑚�𝑐𝑙𝑚 , 𝑐𝑓𝑛�
𝐿
𝑛=1

  .  (54) 

To select the ten minutiae for the alignment procedure a modified similarity value using the support 
value described above is obtained. The modified similarity value is computed as: 

 
𝑆0(𝑙,𝑓) = 𝑆𝑚(𝑙, 𝑓) ∗ 𝑝�𝑐𝑙𝑚 , 𝑐𝑓𝑛� ,  

 
(55) 

where the minutiae 𝑙 and 𝑓 are in the radial triangulation structures related to the centroids 𝑐𝑙𝑚  and 𝑐𝑓𝑛 
respectively. The global matching phase is performed as described in [19]. Finally the score expression 
is modified by: 

𝑆 = 𝛾0 + 𝛾1 ∗
𝑁𝑀

𝑁𝑀 + 20
+ 𝛾2 ∗ 𝑆𝐷 ∗

𝑁𝑀
𝑁𝑀 + 𝑁𝐿

∗
𝑁𝑀

𝑁𝑀 + 𝑁𝐹
 , 

  
(56) 

where 𝛾0, 𝛾1, 𝛾2 are parameters obtained by logistic regression learning [22]. The results reported 
shows how this proposal works better than the previous and the one proposed by Jain et al. (2009) 
which will be covered in the next chapter. Later we will present and discuss those results. 
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4 Multi Feature Partial Palmprint Matching Methods 

In [23] two system for full-to-full palmprint matching and partial-to-full palmprint matching are 
proposed. The authors propose the use of a variety of palmar features (friction ridges, minutiae, flexion 
creases and palmar texture). In [23] a new segmentation algorithm based on Active Contour Model to 
distinguish the foreground from the background it is also introduced. In this section we will be covering 
the partial-to-full system while the full-to-full system will be cover in the next section. 

In order to remove the spurious minutiae caused by creases, an algorithm based on different 
resolutions of the same palmprint image is developed to detect the creases map. Firstly, the ridge valley 
pattern is removed by applying a Gaussian smoothing filter width size window 15 and standard 
deviation 6. Also two palmprint images with resolution of 250 dpi and 125 dpi are obtained from the 
original image. Eight directional filters [24]  are applied to convolve the three images obtaining a 
candidate crease region. Further processing is applied to the candidate crease region connecting the line 
segments close to each other by using the Radon transform [25]. After the minutiae extraction those 
minutiae close to a crease are removed.  

The latent-to-full palmprint matching technique proposed in [23] uses the texture information in 
addition to the minutiae information. Texture information is captured using the Scale Invariant Feature 
Transformation (SIFT) [26] points. The argumentation to use SIFT points is that in some cases when 
minutiae matching fails completely SIFT provide a good similarity score.  

The first step to extract the SIFT points is to obtain the Different of Gaussian (DOG) images by 
using a set of Gaussian smoothed original image at various scales, then they search for stable points in 
the DOG space.  Then to obtain the feature points each pixel is compared with the neighborhood, and 
the ones with the smallest or the highest values are selected, those points lying on an edge are removed. 
Then a descriptor invariant to orientation is obtained by using the histogram of orientation gradient and 
rotating it with respect to the dominant orientation. Two points are deemed matched if the ratio of the 
Euclidean distance to the closest points is less than a threshold (0.75 in their experiments). The 
matching score is the number of matching points. VeriFinger 4.2 [9] is used to match the minutiae and 
both score are then combined. 

The following limitations of the above procedure were pointed by [7] when they argued that the  
SIFT features cannot be consistently detected in latent and full prints and that VeriFinger 4.2 is not 
advisable for latent palmprint matching. We can also say that the computational cost of the algorithm is 
extremely high and that any algorithm to align the latent palmprint images is proposed. Furthermore, 
the number of SIFT points is extremely high and therefore the system is impractical in forensic 
scenarios. 

In [7] the authors introduce a new fixed length minutia descriptor named MinutiaCode used to 
capture distinctive information around a minutia. This descriptor is based on a previous work [27] 
where the length of the minutia descriptor proposed is variable depending on the number of neighboring 
minutiae. The authors in [7] argue that the similarity between two variable-length minutiae descriptors 
is not very efficient, therefore a fixed-length minutia descriptor MinutiaCode is introduced.  

The MinutiaCode of a minutia is constructed by dividing the circular region around a minutia into 
(𝑅 − 1) ∗ 𝐾 sectors by 𝑅 = 5 concentric circles and 𝐾 = 8 lines. The radius of the 𝑟 circle is 20 ∗ 𝑟 
pixels. The direction of the 𝑘 line is 𝜃 + (𝑘 − 1) ∗ 𝜋

𝐾
, where 𝜃 denotes the direction of the central 

minutia. For each sector a set of features is computed, including the quality (1: foreground, 0: 
background), mean ridge direction, mean ridge period, and the numbers of four types of neighboring 
minutiae defined as: reliable and with the same direction as the central minutia (RS), unreliable and 
with the same direction as the central minutia (US), reliable and with the opposite direction to the 
central minutia (RO) and unreliable and with the opposite direction to the central minutia (UO). If the 
difference between the directions of the neighboring minutia and the central minutia is less than 𝜋/2, 
the neighboring minutia has the same direction to the central minutia, otherwise it has the opposite 
direction. To classify the minutiae in reliable and unreliable the procedure described in [28] is used. 
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The similarity 𝑠 between two MinutiaCodes is defined as the weighted average value of the 
similarities of all valid sectors. A pair of sectors is considered valid if both sectors are in the 
foreground. If the numbers of valid sectors is less than (𝑅 − 1) ∗ 𝑘/2 then 𝑠 = 0 otherwise s is 
computed by: 

 

𝑠 =
1

∑ 𝑤𝑖
(𝑅−1)∗𝑘/2
𝑖=1

� 𝑤𝑖𝑠𝑖 ,

(𝑅−1)∗𝑘/2

𝑖=1

    

 

(57) 

where 𝑠𝑖 denotes the similarity of the 𝑖 pair of sector and 𝑤𝑖 the weight of the pair of corresponding 
sectors and is defined as 𝑤𝑖 = (max(𝑛1,𝑛2) + 𝑤0), where 𝑛1 and 𝑛2 are the number of reliable 
minutiae in the two corresponding sectors and 𝑤0 is a weight for sectors without reliable minutiae (set 
to 0.2 in their experiments).  

The similarity 𝑠𝑖 between two corresponding sectors is defined as 0 if the difference between ridge 
directions or ridge periods is greater than the corresponding threshold (𝜋

6
  and 3 pixels), otherwise 𝑠𝑖  is 

computed as: 
 

𝑠𝑖 =
𝑛𝑀
𝑛𝑆

 , (58) 

 
𝑛𝑀 = 𝑛𝑀𝑆 + 𝑛𝑀𝑂 ,  (59) 

 
𝑛𝑆 = 𝑛𝑆𝑆 + 𝑛𝑆𝑂 ,  (60) 

 
𝑛𝑀𝑆 = min(𝑛𝑅𝑆1 + 𝑛𝑈𝑆1,𝑛𝑅𝑆2 + 𝑛𝑈𝑆2) ,  (61) 

 
𝑛𝑀𝑂 = min(𝑛𝑅01 + 𝑛𝑈01,𝑛𝑅02 + 𝑛𝑈02) , (62) 

𝑛𝑆𝑆 = max(𝑛𝑅𝑆1,𝑛𝑅𝑆2,𝑛𝑀𝑆) ,  (63) 

𝑛𝑆𝑂 = max(𝑛𝑅𝑂1,𝑛𝑅𝑂2,𝑛𝑀𝑂) , 
 (64) 

where 𝑛𝑀 is the number of matched minutiae, 𝑛𝑆 number of minutiae that should be matched and 𝑛𝑅𝑆, 
𝑛𝑈𝑆, 𝑛𝑅0, 𝑛𝑈0 the number of minutiae in the palmprint of types RS, US, RO, UO respectively.  

The global matching is performed using the normalized similarity defined in [28] and taking the top-
five pairs of minutiae in decreasing order. These top-five pairs of minutiae are used to perform the 
alignment process. After the alignment, the minutiae close to each other in location and direction are 
classified as matching minutiae. 

The matching score is computed as: 
 

𝑆 = 𝑊𝑚 ∗ 𝑆𝑚 + (1 −𝑊𝑚) ∗ 𝑆𝑑  , 
 

(65) 

where 𝑆𝑚 and 𝑆𝑑 denote the minutiae matching and the direction field matching scores respectively. 
The weight 𝑊𝑚 is empirically set to 0.8. The minutiae matching score is calculated by the formula (52), 
but now 𝑆𝐷 is the average similarity of descriptors for all the matching minutiae, and 𝑁𝐿 and 𝑁𝐹 are the 
number of unmatched minutiae in latent and full prints that are reliable and belong to the common 
region of the two palmprints. The direction field matching score is computed by: 

 (66) 
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𝑆𝑑 =
𝑁𝑏

𝑁𝑏 + 900
∗ �1 −

2 ∗ 𝐷𝑑
𝜋

� , 

 
where 𝑁𝑏 is the number of blocks where the difference of direction between latent and full print is less 
than 𝜋

8
, and 𝐷𝑑 is the mean of the difference of direction values of all the blocks.  

Some disadvantages of this proposal are pointed by the authors of [21]. They say that MinutiaCode 
is not robust to distortion and disturbance of central minutiae and also that is too time consuming.  

In [14] a new method for latent palmprint matching is proposed, that makes use of a variety of 
features. These features are minutiae, orientation field, density map and principal lines.  

In the minutiae extraction stage a value of confidence level is attached to the minutiae, based on the 
difference of the ridge direction produced by the composite algorithm that estimate the orientation field 
previously described in section 1 and the gradient-based method in the region around the minutia. If the 
difference is high the confidence level is low, otherwise the confidence level is high. Before the 
matching score is computed, the alignment procedure is performed using the method proposed in [29]. 
The matching minutiae score is computed by: 

 

𝑆𝑚 =
𝐶𝑚

𝐶𝑚 + 20
∗
𝐶𝑚2

𝐶𝑙𝐶𝑓
 , 

 

(67) 

where 𝐶𝑚 is the sum of all the matched minutiae pairs confidence level productions, and 𝐶𝑙 and 𝐶𝑓 are 
the sum of all the confidence value in the common area for latent and full palmprint respectively. 

The density map is extracted along with the orientation field and the similarity score is calculated as: 
 

𝑆𝑑 =
𝑁𝑑

𝑁𝑑 + 900
∗

1
𝑁𝑏

� 𝑒𝑥𝑝�− �
1

𝑓𝑙(𝑥,𝑦) −
1

𝑓𝑓(𝑥,𝑦)��
(𝑥,𝑦)𝜖∇

 , 

 

(68) 

where  𝑁𝑑 is the number of matched blocks, ∇ denotes the common area, 𝑁𝑏 is the number of blocks in 
the common area, and 𝑓𝑙 and 𝑓𝑓 denote the ridge densities of latent and full palmprints respectively. A 
matched block pair is composed by two overlapping blocks whose ridge distance (the inverse of ridge 
density) difference is within 1 pixel. The similarity of the orientation fields 𝑆𝑜 is measured with a 
similar score formula.  

To extract the principal lines map they need to distinguish the principal lines from all the detected 
creases in their estimation of the orientation field. To achieve this, the general Hough transform [30] is 
applied. The similarity of the principal line map is computed by the next formula: 

 

𝑆𝑝 =
𝐸𝑚

min (𝐸𝑙 ,𝐸𝑓)
 , 

 

(69) 

𝐸𝑚 = � min�𝐼𝐸𝑙 (𝑤, ℎ), 𝐼𝐸
𝑓(𝑤,ℎ)� ∗ �𝐼𝐷𝑙 − 𝐼𝐷

𝑓� ,
(𝑤,ℎ)

  

 

(70) 

where 𝐸𝑙 and 𝐸𝑓 are the principal line energy sum in the common area for latent and full palmprint 
respectively, 𝐼𝐸𝑙  and 𝐼𝐸

𝑓 are the creases energy of the matched energy points and 𝐼𝐷𝑙  and 𝐼𝐷
𝑓 are the 

directions of these matched points. Two energy points are deemed as matched if they are located at the 
same position and the direction difference between their corresponding principal lines is less than 𝜋

6
. 

For the scores fusion two different techniques are proposed for verification and identification tasks. 
In verification the linear weighted sum of all the scores is computed and then SVM is used as a 
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classifier to distinguish between a genuine score and an impostor score. For identification purposes the 
authors cited a previous work [31] that stated that the weighted sum performance deteriorates if the 
features are conditionally correlated. Therefore the correlations of the different features are analyzed to 
introduce a new heuristic rule. As minutiae and density map are of low correlation both features are 
fused as following: 

 
𝑆𝑚𝑑 = 𝑤𝑚𝑆𝑚 + (1 −𝑤𝑚)𝑆𝑑  . 

 
(71) 

 
To fuse the principal line map, the authors argued that although its discriminative power is worse 

than the other features, it can provide independent global information of the palmprint. The similarity 
score of the above tree features is computed as:  

 

𝑆𝑚𝑑𝑝 = 𝑆𝑚𝑑 + 𝑆𝑚𝑑 ∗
1

1 − 𝑆𝑝 
 . 

 

(72) 

Since the orientation field is heavily correlated with the minutiae then the final fusion score is 
defined as: 

 
𝑆 = 𝑆𝑚𝑑𝑝+𝑆𝑚𝑑𝑝 ∗ 𝑆𝑜 . 

 
(73) 

One of the main drawbacks of this proposal is that the information related to principal line is not 
always presented in a latent palmprint so this information seems to be unnecessary in latent-to-
full palmprint matching but not in full to full palmprint matching. Furthermore even when the 
results in partial-to-full tests outperform the results obtained in [7] the computational 
complexity remains extremely high. One important result of this work is that it proved that 
other kinds of features can be used effectively with minutiae information even though the 
system was not tested with latent palmprints.  

In [32] a match propagation minutiae algorithm was introduced. The idea is that for a genuine pair of 
matched minutiae belonging to a pair of genuine matched palmprints the surrounded minutiae should 
also match with high confidence, and for an impostor pair of palmprints the matched minutiae may 
appear at arbitrary locations in the palmprint image. Before the match propagation algorithm, a 
clustering algorithm is applied on the minutiae to avoid similarity computation between minutiae with 
different local characteristics.  

To describe the local properties of the minutiae orientation structure proposed in [33] is used. Given 
a reference minutia 𝑚, 𝐿 concentrical circles are considered to extract the local information about the 
minutia 𝑚. 𝐿 sample points are equally distributed for each circle starting from the projection location 
of 𝑚 along its direction on the circle. The value of each sample point is the difference of the local ridge 
orientation at the sample point and the ridge orientation at the location of reference minutia. The ridge 
period descriptor is also taken into account at that point. This local descriptor is invariant to translation 
and rotation. Some sample may fall outside the foreground region, so the values of this sample points 
are estimated with the next formulas: 

 

𝑜 =
1
2

tan−1 �
∑ sin 2𝑜𝑖𝑖∈𝑉
∑ cos 2𝑜𝑖𝑖∈𝑉

� , (74) 

 

𝑤 =
1
𝑛𝑣
�𝑤𝑖 ,
𝑖∈𝑉

 (75) 
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where V is the set of valid nearest sample points with 𝑛𝑣 points in the structure, 𝑜 and 𝑤 are the 
predicted ridge orientation and ridge period values. The distance between two orientation descriptors is 
computed by: 

 

𝐷(𝑂𝐷,𝑂𝐷′) = ��[(cos 2𝑜𝑖 − cos 2𝑜′𝑖)2 + (sin 2𝑜𝑖 − sin 2𝑜′𝑖)2] 
𝑁

𝑖=1

 , 

 

(76) 

where N is the number of sample points. The centroid of the cluster with 𝑆 descriptors is defined as: 
 

𝑐𝑖 =
1
2

tan−1 �
∑ sin 2𝑜𝑘𝑆
𝑘=1

∑ cos 2𝑜𝑘𝑆
𝑘=1

�  . 

 

(77) 

The clustering for ridge orientation descriptors is done by using K-means as in the case of ridge 
period descriptors. In the last case the Euclidean distance measure is used. The minutiae are also 
clustered by assigning each minutia to the cluster whose centroid is closest to the minutia descriptor.  

For the minutiae based comparison they defined three minutiae similarity measures. The first two are 
based on ridge orientation and ridge period descriptors and are defined as: 

 

𝑆𝑜 =
1
𝑁𝑣

�𝑒𝑥𝑝 �−
∆𝑜𝑖
𝜇𝑜
�  ,

𝑖∈𝑉

 (78) 

 

𝑆𝑟 =
1
𝑁𝑣

�𝑒𝑥𝑝 �−
∆𝑤𝑖
𝜇𝑟

�
𝑖∈𝑉

 , (79) 

 
∆𝑜𝑖 = 𝑚𝑖𝑛(|𝑜𝑖 − 𝑜𝑖′|, 180 − |𝑜𝑖 − 𝑜𝑖′|) , (80) 

 
∆𝑤𝑖 = |𝑤𝑖 − 𝑤𝑖′| , 

 
(81) 

 
where 𝑉 is the set of sample points valid in both descriptors (the predicted sample points values are not 
used), 𝑁𝑣 is the number of valid sample points, and 𝜇𝑜 and 𝜇𝑟 are two predefined parameters set to 4 
and 2 respectively. When 𝑁𝑣 < 20 𝑆𝑜 = 𝑆𝑟 = 0. The third measure computes the similarity between the 
local structures of two minutiae. The local structures are constructed in a similar way than [7] that was 
previously described in this work, with the slight difference that the sectors in the template palmprint 
are overlapped. Each minutia in the local structure of a center minutia is described by the triplet 
(𝑟, 𝛾,𝛼) where 𝑟 and 𝛾 are the radius and the angle in the polar coordinate system respectively, 𝛼 is the 
normalized minutia direction. These values are taken with respect to the center minutia and the center 
minutia direction respectively. After the alignment of the two structures two minutiae in the same sector 
are deemed as matched minutiae if the following three conditions are met: 

 
𝑚𝑖𝑛(|𝛾 − 𝛾′|, 360 − |𝛾 − 𝛾′|) < 𝑇𝐻𝛾 ,  (82) 

|𝑟 − 𝑟′| <
𝑟

𝑟𝑚𝑎𝑥
∗ 𝑇𝐻𝑟 , (83) 
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𝑚𝑖𝑛(|𝛼 − 𝛼′|, 360 − |𝛼 − 𝛼′|) < 𝑇𝐻𝛼 , (84) 

where 𝑇𝐻𝛾, 𝑇𝐻𝑟 and 𝑇𝐻𝛼 are thresholds set by them to 15, 20 and 8 respectively, 𝑟𝑚𝑎𝑥 is the radius of 
the local structure. The Euclidean distance is used to select one pair of minutiae from those pair of 
minutiae that satisfy the above conditions. The similarity of two local structures is given by: 

 

𝑆𝑚 =
1
𝑀
�𝑠𝑖 ∗

𝑀
𝑁𝑡 + 𝑁𝑞

∗
𝑀

𝑀 + 10
∗ 𝑄�𝑑𝑞� ∗ 𝑄(𝑑𝑡) ,

𝑀

𝑖=1

 

 

(85) 

where M is the number of matched minutiae, 𝑁𝑞 and 𝑁𝑡 are the numbers of local minutiae in the query 
and the template respectively, 𝑠𝑖 is the similarity of the 𝑖 minutiae pair, 𝑄(𝑥) is the minutiae quality 
measure defined in [34] and 𝑑𝑞 and 𝑑𝑡  are the average Euclidean distances of the three nearest minutiae 
to the center minutiae in query and template structures respectively. 

After the minutiae clustering, the next step is to select the initial minutiae pairs for the match 
propagation process. The algorithm is as follows: 

1. For each cluster, the weak similarity between each minutia in the query palmprint and each minutia 
in the template palmprint is computed, the pair with the highest weak similarity is selected. Weak 
similarity is computed as: 𝑆𝑜 ∗ 𝑆𝑟 . 

2. The top 𝐾 minutiae pairs with the highest weak similarity are selected. 𝐾 is defined as: 
min (100,𝑀𝑞) where 𝑀𝑞 is the number of minutiae in the query palmprint. 

3. For each minutiae pair selected in the above step, their strong similarity are computed. Strong 
similarity is defined as: 𝑆𝑜 ∗ 𝑆𝑟 ∗ 𝑆𝑚. 

4. Select the top 𝐾′ minutiae pairs with the highest strong similarity. 𝐾′ is defined as: min (50,𝐾).  
5. The top 𝐾′ minutiae pairs selected are the initial minutiae pairs for the match propagation process. 
 

The matching propagation procedure for an initial minutiae pair is as follows: 
1. For the initial pair the matching minutiae in their local structure are selected. 
2. Each matching minutiae pair with no minutiae already selected is added to the minutiae matching list 

result. 
3. The pairs of minutiae selected above whose strong similarity is bigger than a threshold and their 

transformation parameters are close enough to the transformation parameters of the initial pair are 
selected for the match propagation process and are stacked for further process. 

4. One pair of those stacked is selected as the new initial pair and then the algorithm is repeated from 
the step 1 until there are not more pairs stacked. 

 
Next the score of the overlapped region determined by the minutiae pairs given by the above 

procedure is calculated. To compute the score they used the orientation field (𝑆𝑐𝑜𝑟𝑒𝑜), the density map 
(𝑆𝑐𝑜𝑟𝑒𝑟) and the average minutiae similarity (𝑆𝑐𝑜𝑟𝑒𝑚): 

𝑆𝑐𝑜𝑟𝑒𝑜 =
1
𝑁𝑏

�𝑒𝑥𝑝 �−
∆𝑜𝑖
𝜇𝑜
� ∗

𝑁𝑜
𝑁𝑜 + 900

𝑁𝑏

𝑖=1

  ,  (86) 

 

𝑆𝑐𝑜𝑟𝑒𝑟 =
1
𝑁𝑏

�𝑒𝑥𝑝 �−
∆𝑟𝑖
𝜇𝑟
� ∗

𝑁𝑟
𝑁𝑟 + 900

  ,
𝑁𝑏

𝑖=1

 
(87) 

 (88) 
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𝑆𝑐𝑜𝑟𝑒𝑚 = �𝑆𝑖𝑚𝑜𝑟𝑚
𝑖  ,

𝑀

𝑖=1

  

 
𝑆𝑐𝑜𝑟𝑒 = 𝑆𝑐𝑜𝑟𝑒𝑜 ∗ 𝑆𝑐𝑜𝑟𝑒𝑟 ∗ 𝑆𝑐𝑜𝑟𝑒𝑚 , 

 
(89) 

where 𝑁𝑏 is the number of blocks of 16X16 pixels in the overlapped area, 𝑁𝑜 is the number of blocks 
with the average ridge orientation difference less than 22.5 degree, 𝑁𝑟 is the number of blocks with the 
average ridge period difference less than 2 pixels and 𝑆𝑖𝑚𝑜𝑟𝑚

𝑖  is the strong similarity of the 𝑖 pair 
computed by the match propagation process. 

If the score obtained is bigger than a predefined threshold then this is deemed as the final score and 
no more processing is needed, otherwise the match propagation algorithm is performed again using 
another initial pair of minutiae. If none of the obtained scores is bigger than the predefined threshold 
then the final score is the maximum of the obtained scores. 

The above approach has no need of any ridged alignment which constitutes one of its bigger 
advantages. The results obtained not only improve the previous results in [7] but also the clustering 
procedure makes the current approach more efficient. However the system still remains very susceptible 
to spurious minutiae and small overlap area.  

In [35] the authors argued that even when the use of radial triangulation [19, 21] increases the 
accuracy, the features extracted from them, are still affected by skin distortion. They proposed the use 
of a representation called expanded triangle set [36], which is based on minutia triplets obtained from 
Delaunay triangulation. The use of the expanded triangle set is justified by the high affectations in the 
Delaunay triangular structure caused when the extraction method fails to find a minutia.  

Given a set of points 𝑃, a Delaunay triangulation 𝑇 over that set of points and E the set of edges of 
the Delaunay triangulation the expanded triangle set is defined as: 

• Definition 1 (Triangular Hull). Let 𝑝𝑖 be a point of 𝑃. The set 𝑁𝑖 = �𝑝𝑗��𝑝𝑖 ,𝑝𝑗� 𝜖 𝐸�  denoted the 
points set formed by all the adjacent vertices of 𝑝𝑖 in the Delaunay graph G. the triangular hull of 𝑝𝑖 
is defined as the Delaunay triangulation of the planar point set 𝑁𝑖, and it is denoted by 𝐻𝑖. 

• Definition 2 (Expanded triangle set). The expanded triangle set of 𝑃 is defined as 𝑅 = 𝑇 ∪ 𝐻1 ∪ 𝐻2 ∪
…∪ 𝐻𝑁 . 

Therefore the set 𝑅 contains all of the Delaunay triangles that are formed when each minutia is 
eliminated individually. Figure 16 shows some triangle sets examples. 

 
Fig. 16. Triangle sets examples [35] 

For each triangle 𝑡 in the expanded set, they defined a feature vector 𝑓(𝑡) as follows: 

 
𝑓(𝑡) = (𝑠𝑡,𝛽1,𝛽2,𝛽3, 𝑟1, 𝑟2, 𝑟3,𝑑1,𝑑2,𝑑3) , (90) 

 

𝑠𝑡 = � 0, 𝐴𝑡 < 0
     𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  , (91) 
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𝐴𝑡 = 𝑥1(𝑦2 − 𝑦3) + 𝑥2(𝑦3 − 𝑦1) + 𝑥3(𝑦1 − 𝑦2) , 

 
(92) 

where 𝑠𝑡 is the triangle sign which is invariant to rotation, 𝛽𝑖 is the relative direction of the minutia 𝑚𝑖 
with respect to his opposite side in 𝑡, 𝑟𝑖 is the ridge counter between minutiae (number of ridges crossed 
by a triangle side joining two minutiae) and 𝑑𝑖 is the length of the 𝑖 side of the triangle. After the feature 
extraction they remove from the expanded set the triangles with at least one of value of 𝑟𝑖 outside the 
interval [0,16).  

Two feature vectors 𝑓(𝑡) and 𝑓(𝑡)′ are corresponding if the following conditions are met: 
 

𝑠𝑡 = 𝑠𝑡 ,
′  (93) 

 
|𝛽𝑖 − 𝛽𝑖′| ≤ 𝛿𝛽 , 

(94) 

 
|𝑟𝑖 − 𝑟𝑖′| ≤ 𝛿𝑟  , (95) 

 
 |𝑑𝑖 − 𝑑𝑖′| ≤ 𝛿𝑑  , 

 
(96) 

where 𝛿𝛽 , 𝛿𝑟, 𝛿𝑑 are predefined thresholds set to 3 in their experiments. The tuples of two 
corresponding triangles 𝑡 and 𝑡′ are defined as 𝑐𝑡𝑖 = (𝛼𝑖 , 𝑒𝑖, 𝑒𝑖′) where 𝛼𝑖 is the normalized difference 
between the 𝑖 interior angles of 𝑡 and 𝑡′ computed in a similar way to [37] and 𝑒𝑖 , 𝑒𝑖′ are segments of the 
triangles. They take only those tuples with 𝛼𝑖 equal to the mode of all corresponding tuples. Those 
tuples are used to build a similarity weighted graph 𝐺𝑠.  

The vertices set of 𝐺𝑠 is built from the minutiae that originate the segments of the tuples and the 
edges set is built from the mutual match between the same segments. That is to say, for each tuple the 
two vertices that originate the segments are added to the vertices set if they are not previously added, an 
edge connecting these two vertices is added too.  A similarity value between two segments of a tuple is 
added as a weight value to its corresponding edge. The graph 𝐺𝑠 could not be connected; therefore they 
applied the Kruskal algorithm to find the spanning tree of every connected component. The spanning 
trees are sorted by the number of edges. The first spanning tree is merged with the second by trying to 
add a virtual edge that met some additional geometrical constraints if this process is successful the 
merged spanning tree is taken as the first spanning tree and the process is repeated until no more 
spanning trees can be merged. The final score between a query palmprint 𝑀𝑞 and a template palmprint 
𝑀𝑡  is given by: 

 

𝑆�𝑀𝑞 ,𝑀𝑡� =
𝑠𝑖𝑚 ∗ |𝑉|

min ��𝑀𝑞�, |𝑀𝑡|�
 , 

 
(97) 

where |𝑉| is the number of vertices in the similarity graph 𝐺𝑠, �𝑀𝑞� and |𝑀𝑡| are the number of minutiae 
in the query palmprint and in the template palmprint respectively, and 𝑠𝑖𝑚 is the sum of the weights of 
all the edges in the merged spanning tree. 

5 Full-to-Full High Resolution Palmprint Matching 

Full-to-Full high resolution palmprint matching methods are mainly used in authentication platforms 
when a high reliability is needed because of the high cost of the acquisition devices. In [23] before the 
minutiae matching (See previous section), the two compared palmprints are coarsely aligned by the 
heart line. The resolution of the segmented image is reduced to 125 dpi and the upper left region of the 
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down-sampled image is cut. To detect the heart line from the cropped image the 2D Morlet wavelet 
transform [38] and the Random Sample Consensus algorithm (RANSAC) [39] are applied. The 2D 
Morlet wavelet transform is used to capture the high frequency responses where the intensity values 
change abruptly, while the RANSAC algorithm is used to fit a line to the response set of point.  

After the alignment the palmprint image is divided in 5 sectors as they show in the Figure 17, the 
point P is the starting point of the heart line estimated in the above step. The minutiae matching process 
is performed by VeriFinger 4.2 [9].  

In [8] the authors did three major contributions to the field of palmprint matching: 

1. A quantitative study about the discriminative power of various palmprint features in the different 
regions. Some results of this study were cited in the introduction of this work. 

2. For the alignment of the enrolment palmprints process an orientation field based algorithm is 
introduced.  

3. A segmented-based palmprint matching algorithm to deal with the different discriminative power of 
the different palmprint regions and distortion. 

4. A cascade filtering to reject non matched palmprints in an early stage. 

 
Fig. 17. Sector division in [23]. 

In their study they founded, as was defined by palmprint forensic experts in [40], that there is some 
common patterns in palmprints with low deviation for each palmar region and a high deviation between 
regions. The Figure 13 taken from [8] shows the common patterns of the ridge flow in the different 
regions. Therefore they argue that orientation field is a good feature for the alignment of the palmprints 
in the enrollment stage. The Figure 18 is used as a reference for the alignment in the enrollment stage. 
The reference image is also mirrored and used to classify the enrollment palmprints in left palmprints or 
right palmprints. To obtain the transformation parameters the generalized Hough transform [30] is 
applied and high weights are assigned to the regions with high orientation field consistence. 

In the segmented-based matching algorithm each registered palmprint is firstly divided into 16 non-
overlapped segments of 510x510 pixels. This segmentation is also performed in the query palmprint 
and each segment is matched with the corresponding segments in the template database. Before the 
match, each template segment is enlarged to 610x610 pixels with the aim of completely contain the 
query segment, and then, those pair of segments with a small foreground and minutiae in the overlapped 
section (incomplete segments) are removed. Finally,  the remaining pair of segments are aligned using 
the Hough transform minutiae matching algorithm described in [29]. 

After the align process, the similarity of each feature (minutiae, orientation field, density map) is 
obtained in the aligned pair of segments respectively. The values of similarity of minutiae and density 
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map are computed similarly to [14] using the formulas (67) y (68)  respectively. The similarity of the 
orientation field is estimated with the following formula: 

 

𝑆𝑜 =
𝑁𝑜

𝑁𝑜 + 100
∗ �1 −

𝐷𝑜
90
�,  

 

(98) 

where 𝑁𝑜 is the number of matched blocks by its orientation field and 𝐷𝑜 is the mean of the orientation 
difference in all the blocks. At this point, the relative displacement of each pair of segments are also 
used as a feature. Therefore the feature vector has 96 components taking into account each similarity 
value and relative difference for each pair of segments.  

 

 
Fig. 18. The common patterns of the ridge orientation flow in different regions of a palmprint [8]. 

Finally a Bayesian Framework is used to estimate a match score. The likelihood ratio is estimated 
with the next formula: 

 

𝐿 =
𝑃(𝐺)
𝑃(𝐼)

��𝜖 + 𝐿𝑘𝑠 𝐿𝑘𝑑� ,
16

𝑘=1

 
(99) 

where 𝑃(𝐺) and 𝑃(𝐼) are the priori probabilities of be a genuine or an impostor respectively, 𝐿𝑘𝑠  and 𝐿𝑘𝑑  
are the likelihood ratio values estimated according to the similarity scores and displacements parameters 
of the k pair of segments respectively and 𝜖 is a regularization term empirically set to 0.001 added to 
avoid the influence of very poor quality segments on genuine matches. The values  𝑃(𝐺)

𝑃(𝐼)
 and the 

likelihood of the incomplete segments are set to 1. They use Gaussian Mixture Models (GMMs) and 
Expected Maximization (EM) to train the Bayesian framework. 

A cascade filter is also proposed to reject those palmprints with some unmatched segments. The idea 
is to reject the most pair of palmprints by just comparing a small region. Then in each level of the 
cascade filter the likelihood of the query palmprint segments with the segments of cascade filter level is 
estimated and if this value is bigger than some threshold defined for this level then the palmprint is 
passed to the next level otherwise is rejected.  
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The global procedure described above is applicable to full-to-full palmprint matching. In latent-to-
full palmprint matching it requires a manually alignment by a forensic expert. The above statement and 
the fact that this algorithm is essentially designed for full-to-full palmprint matching [32] is the reason 
why it was presented in this section. 

In [41] a palmprint matching algorithm based on the Minutia Cylinder-Code representation proposed 
in [42] is introduced. MCC is a fixed-radius approach based on 3D data structures that can be 
represented by a bit vector and therefore is very efficient for matching purposes. The only different with 
the MCC descriptor proposed in [42] is that for achieve better efficient, the validity record of each 
MCC descriptor component  is removed.  The similarity between two local structures is computed as 
was described in [42].  

The global score is computed by means of a relaxation matching strategy. Given all the local 
similarities they firstly obtain a normalized similarity matrix as: 

 

𝑆̂[𝑟, 𝑐] = �1 −
∑ 𝑆[𝑖, 𝑐]𝑛𝐴
𝑖=1,𝑖≠𝑟 +∑ 𝑆[𝑟, 𝑗]𝑁𝐵

𝑗=1,𝑗≠𝑐

𝑛𝐴 + 𝑛𝐵 − 2
� ∗ 𝑆[𝑟, 𝑐] , 

 

(100) 

where 𝑛𝐴 and 𝑛𝐵 are the number of minutiae in palmprints A and B respectively, and 𝑆[𝑟, 𝑐] is the local 
similarity between the minutiae 𝑟 and 𝑐. The idea is to update each similarity value taking into account 
the similarity of each minutia with all the minutiae in the other palmprint with the aim of penalize the 
minutiae that are not too much discriminant (i.e. minutiae having high similarity values with many 
others). Then the top 𝑛𝑅 minutiae pairs are selected for the relaxation process.  

The normalized similarity of a pair of minutia 𝑡 at iteration 𝑖 in the relaxation procedure is defined 
as: 

 

𝑆̂𝑡𝑖 = 𝑤𝑅 ∗ 𝑆̂𝑡𝑖−1 + (1 −𝑤𝑅) ∗
�∑ 𝑝(𝑡,𝑘) ∗ 𝑆̂𝑘𝑖−1

𝑛𝑅
𝑘=1,𝑘≠𝑡 �

𝑛𝑅 − 1
  , 

(101) 

 

𝑝(𝑡,𝑘) = �𝑍�𝑑𝑖 , 𝜇𝑖
𝜌, 𝜏𝑖

𝜌�,
3

𝑖=1

 
(102) 

 

𝑑1 =
�𝑑𝑠�𝑎𝑟𝑡 ,𝑎𝑟𝑘� − 𝑑𝑠(𝑏𝑐𝑡 , 𝑏𝑐𝑘)�

max �𝑑𝑠�𝑎𝑟𝑡 ,𝑎𝑟𝑘�,𝑑𝑠(𝑏𝑐𝑡 ,𝑏𝑐𝑘)�
 ,  (103) 

 
 𝑑2 = �𝑑∅�𝑑𝜃�𝑎𝑟𝑡 ,𝑎𝑟𝑘�,𝑑𝜃(𝑏𝑐𝑡 ,𝑏𝑐𝑘)�� , (104) 

 
𝑑3 = �𝑑∅�𝑑𝑅�𝑎𝑟𝑡 ,𝑎𝑟𝑘�,𝑑𝑅(𝑏𝑐𝑡 ,𝑏𝑐𝑘)�� , (105) 

where 𝑤𝑅 is a weighting value in the interval [0,1], 𝑑∅ is the difference (modulo 2𝜋) between two 
angles, 𝑑𝜃 is the directional difference between two minutiae, 𝑍 is a sigmoid function with parameters 𝜇 
and 𝜏 and 𝑑𝑅 is the radial angles difference. The radial angle is defined as the angle subtended by the 
edge connecting the two minutiae and the direction of the first one. Finally the global score is computed 
as the average of the 𝑛𝑝 relaxed similarity values of the 𝑛𝑝 pairs with the greatest efficiency 𝐸𝑡. The 
efficiency of pair 𝑡 is defined as the ratio between the final and the initial value of similarity of 𝑡. As is 
easily see this procedure make specially emphasis in the angles and direction of the minutiae which can 
be problematic in palmprints with low quality. The results reported are obtained under full-to-full 
palmprint matching conditions and that is the reason why this approach was included in this chapter. 
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6 Conclusions 

Summing up, high resolution palmprint matching is still a wide open field of research with a huge 
impact in the forensic field. The existing differences between palmprints and fingerprints make 
palmprint matching a more challenging problem and encourage the development of new techniques that 
can exploit the palmprints intrinsic characteristics. The literature available is yet very sparse compared 
with others fields despite the significant advances that have been made.  

Orientation estimation algorithms are an important part in any fingerprint matching system. In 
palmprints, those algorithms have a bigger importance since the presence of a wide number of creases 
can lead to a non-reliable orientation estimation and therefore to the detection of many spurious 
minutiae. The orientation estimation algorithm proposed in [7] can be considered as the state-of-the-art 
algorithm in the field but yet it has some drawbacks associated to the region growing procedure: 

1. The algorithm cannot reliably detect ridges in noisy high curvature areas. 
2. If the region with the most reliable first waves was obtained from a crease seed, then the procedure 

fails in detecting the ridge region. 
3. If a region obtained from a crease seed has no overlapping blocks with the ridge regions, then this 

region is copied to the final region and therefore the final region contains creases. 
 
In general the algorithm described in [7] has some problems in areas with a very high density of 

creases. In [14] the authors proposed the use of the Radon transform to reliable extract ridges in those 
areas but the detection improvement reported is very small and the algorithm is considerably less 
efficient. Furthermore the problems associated to the region growing algorithm still remain. The use of 
more effective orientation estimation algorithms could lead to better recognition rates in the thenar 
region. 

Triangulation methods [19, 21, 35] seem like a right approach to palmprint matching. They could 
make use only of minutiae position and direction information, features that can be reliable extracted by 
forensic experts. The experiments carried on [35] shows how their proposal outperforms the other 
triangulation methods proposed in the literature and the algorithm described in [7] (See Table 1). 
Nevertheless, there are some details to take into consideration: 
1. The database used in the experiments contains only 22 latent impressions what raises the concern 

about the statistic stability of the results.     
2. The proposal in [35] still has some problems associated to the spurious minutiae and the size of the 

connected components. 
3. In [35] the authors make use of the number of ridges crossed by an edge, but we believe that this 

feature can be removed without any significant loss of effectiveness since the ridge counter is not a 
very robust feature for latent impressions. 
The results obtained in [35] were achieved without using any preprocessing or post processing 
technique. 
 

Table 1. Comparison results of identification rate reported in [35] 

Algorithms Rank-1 Rank-10 Rank-20 
Jain et. al. (2009) [7] 67% 73% 80% 

Wang et al. [19] 63% 68% 72% 
Wang et al. [21] 69% 78% 82% 

Expanded Triangle Set [35] 77% 82% 82% 

Many other features besides minutiae appear in the literature (i.e. SIFT points, orientation field, 
ridge density map and others) as well as some studies about their discriminatory value. For example, 
Dai and Zhou in [14] reported that unlike fingerprint the discriminatory power of ridge density map is 
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bigger than the orientation field in palmprints. The discriminative power of the different palm regions 
had been also studied by several authors, the results indicate that the thenar region has the lowest 
discriminative power mainly due to the high density of creases and wrinkles. Jain et al. in [7] theorizes 
that creases can be used to improve the matching accuracy of the latent palmprint matching methods.  

In [32] Liu et al. proposed an efficient latent-to-full palmprint matching method robust to the non-
linear distortion that outperforms several other approaches both in accuracy and efficiency. However, 
the algorithm is still sensible to spurious minutiae and small overlap between impressions. The MCC 
based method for palmprint matching [42] performed very well in the FVC-onGoing 2012 competition 
beating in accuracy the algorithm proposed in [32] under partial-to-full conditions but we believe that a 
test under latent-to-full conditions is mandatory to give the final conclusion.  

In conclusion, many of the algorithms proposed to partial-to-full palmprint matching are not tested 
in latent-to-full conditions. This is mainly because there are no public databases of latent palmprints. 
Spurious minutiae and small overlap area are today the most difficult problems in latent-to-full 
palmprint matching. One interesting problem that could lead to better accuracy and efficiency in latent 
palmprint matching is the automatic determination of to which palm region a particular latent 
impression belongs.  

Future lines of work in this biometric area may be oriented to: 

• Improve the effectiveness of the orientation field estimation methods with the aim of reduce the 
detection of spurious minutiae caused by the presence of creases.  

• Develop a new algorithm for latent-to-full palmprint matching using only minutiae information.  
Explore the use of multiple features like creases to improve the effectiveness of the previously 
developed algorithm. 

• Identify the region of the palm at which a given latent print belongs.  
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