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Abstract: This research is in the field of speaker recognition and is based on the fact that behind 
each supervised or unsupervised learning algorithm, there is an implicit assumption about the 
structural nature of the data. 
Our proposal is to find new speaker information using models of his speech. In order to characterize 
the speaker by his speech, a mapping function can be obtained from a set of speakers models, then 
projecting any new speaker in a new space which increases the variability between classes and 
decreases the variability intra classes, for its classification. 
We will use topological space as a support to use inner geometric structure created by the projection of 
the acoustic models over a new spaces that reflects the nature of the speech acoustic classes of each 
speaker. 
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Resumen: Esta investigación pertenece al campo de reconocimiento del locutor y se 
fundamenta en el hecho de que junto a cada algoritmo de aprendizaje supervisado o no supervisado 
hay una suposición sobre la naturaleza estructural de los datos. 
Nuestro propósito es encontrar nueva información sobre el locutor usando modelos de su voz. Para 
caracterizar al locutor por su voz una función de mapeo puede obtenerse a partir de un conjunto de 
modelos de locutores, entonces proyectando cualquier nuevo locutor en un nuevo espacio se 
incrementa la variabilidad entre clases y disminuye la variabilidad intraclases, para su clasificación. 
Usamos espacios topológicos como base para usar la propia estructura geométrica creada por la 
proyección de los modelos acústicos sobre un nuevo espacio que refleja la naturaleza de las clases 
acústicas de cada locutor. 

Palabras clave: Representación Topológica, Voz, Reconocimiento del Locutor 

1 Introduction  

During the last decade researchers in the field of text independent speaker recognition have 
developed statistical classifiers, discriminatory classifiers and mixtures of them, all working over 
the same model, without using the topological information existing in data, which encourages us 
to search for new information that would be able to improve the recognition results until today. 
An example of this information could be obtained by a new mapping function that contains 
topological information of the Gausian Mixture Models “GMM”, to project these models in a 
new space where the mixtures of the same speaker are in a reduced neighborhood and models of 
other speakers are in different neighborhood. 
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The main goal of our work is focused specifically on the task of model training and 
classification – two key stages in a speaker recognition system- with increased robustness to 
channel and session mismatch. 

2 State of the Art of model training in Speaker Recognition 

Training 
In GMM speaker model [1], each speaker is represented by the means, covariance, and weights 
of a mixture of C multivariate diagonal-covariance Gaussian densities defined in some 
continuous speech features space of dimension F. Baseline algorithm for speaker model training 
is GMM-MAP algorithm [2], which is a maximum a posterior “MAP” adaptation of the classical 
GMM [3] adapting the Gaussian density components from a Universal Background Model 
“UBM” [4]. Classical MAP adaptation is by far the most popular type of speaker modeling in 
text-independent speaker recognition. A state-of-the-art GMM–UBM system was submitted to 
NIST’04 SRE [6] by LIA (University of Avignon) and is described in [5]. 

 Two recent compensation methods have a crucial impact on overall performances, Nuisance 
attribute projection “NAP” [7] and factor analysis “FA” [8].  

Joint Factor Analysis “JFA” [9], is a method to include speaker and session variability 
factors in GMM, has become the state of the art in the field of speaker verification during last 
years, this analysis plays a key role to estimate a compensate target speaker model.  

The basic assumption in JFA is: let C be the number of components in a GMM-UBM and F 
the dimension of the acoustic feature vectors. The CF-dimension vector M obtained by 
concatenating the F-dimensional GMM’s mean vectors corresponding to a given utterance is 
called supervector.  

The assumptions in this algorithm are as follow. First, we assume that a speaker and 
channel-dependent supervector M can be decomposed into a sum of two supervectors, a speaker 
supervector s, and channel supervector c 

M=s + c (1) 

 where s and c are statistically independent and normally distributed.  
Second, we assume that the distribution of s has a hidden variable description of the form  

s=m + vy + dz (2) 

where m is a CF supervector, v is a rectangular matrix of low rank and y is a normally 
distributed random vector, d is a CFxCF diagonal matrix, and z is a normally distributed  CF-
dimensional random vector. We will refer to the columns of v as eigenvoices. 

Third, we assume that the distribution of c has hidden variable description of the form 

c=ux (3) 

where u is a rectangular matrix of low rank, and x is a normally distributed random vector. We 
refer to the components of x as channel factors, and we call the columns of u as eigenchannels. 

The assumption in eq. (2) is equivalent to say that s is normally distributed with mean m and 

covariance matrix 
*2 vvd + , eq. (2) is a model of inter speaker variability. If v=0 and u=0, the 
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assumption in eq. (2) is the same as in classical MAP [10]; on the other hand, if d=0 and u=0, the 
assumption is the same as in eigenvoices MAP [11]. 

3 Classification  

For text-independent speaker verification, the GMM based on statistical theory is the most 
widely used method. A UBM is usually trained from a very large set of development data 
comprised of various speakers, channel types and number of sessions. Target speaker models 
can be obtained by adapting the UBM according to their corresponding enrollment data. A 
GMM-UBM system computes a likelihood ratio score for an unknown test utterance between a 
speaker-dependent acoustic distribution (GMM-MAP model) and a speaker-independent 
acoustic distribution (UBM model).  

Support vector systems “SVM” were first proposed in the early 1990s as optimal margin 
classifiers in the context of Vapnik’s statistical learning theory [12]. Since then have become an 
important alternative of GMM and is widely used as a discriminative classification technique in 
the field of speaker recognition. With the proper use of appropriate sequence kernels, such as 
generalized linear discriminant sequence “GLDS” kernels [13] or Fisher Kernels [14], SVM 
systems can obtain comparable performances to GMM-UBM systems with relatively moderate 
computation complexity. Recently, a new SVM-based speaker verification strategy using GMM-
UBM super vectors has been proposed by Campbell [13] to combine the advantages of the two 
systems. These CF-dimensional super vectors are obtained by stacked the means of the GMM-
UBM mixture components (See fig. 1). 

 

Fig. 1. Procedure of GMM super vector generation 

A GMM-SVM system is a combination of a GMM-UBM and a SVM system. The GMM-
UBM system serves as a feature extractor for the attached SVM system. The SVM classifier is 
used to model the target speaker characteristics and to score the test utterances (See fig. 2).  
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Fig. 2. Structure of a GMM-SVM system 

Linear classification techniques are then applied in this potentially high-dimensional space. 
The main component in an SVM is the kernel, which is an inner product in the SVM feature 
space. Since inner products induce metrics distance, the basic goal of SVM kernel design, is to 
find an appropriate metric in the SVM feature space relevant to the classification problem. 

SVM is a two-class classifier. In the standard formulation, an SVM, f (x), is given by eq. 4. 
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where 〈 ⋅ ,⋅ 〉 stands for the inner product and K(x ,xi ) is a kernel function; the vectors x are 
the training set, the vectors xi are support vectors obtained from the training set; ti are the ideal 
outputs, either 1 or -1, depending upon whether the corresponding support vector is in class 0 or 

class 1 (positive or negative), respectively. ∑ =
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The kernel K(., .) is constrained to have certain properties (the Mercer condition), so that 
K(.,.) can be expressed as: 

( ) ( ) ( )i
t

i xxxxK φφ=,  (5) 

where Φ(x) is a mapping from the input space (where x lives) to a possibly infinite-dimensional 
SVM expansion space. The data points from the training set lying on the boundaries are the 
support vectors xi in equation (4). The focus of the SVM training process is to model the 
boundary between classes. For a separable data set, SVM optimization chooses a hyperplane in 
the expansion space with maximum margin [12]. 

SVM is trained for each target speaker using the GMM super vector of the speaker’s 
enrollment utterances as positive samples, and GMM super vectors of all utterances from 
background speakers as negative samples. 

For classification, a class decision is based upon whether the value, f(x), is above or below a 
threshold. 

4 News approaches about topological voice representation 

The following articles reflect new approaches of topological voice representation in the field of 
speech recognition: 

Authors: Andrew Errity and John McKenna 
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• Institution: School of Computing, Dublin City University, Ireland 

1. An Investigation of Manifold Learning for Speech Analysis (2006) [15]. 

This paper assumes that the acoustic sounds lie on a high-dimension manifold, so if the 
range of the acoustic sounds of the human voice is a subset of all sounds, therefore it lies on a 
low-dimensional submanifold of the high-dimension space of all possible sounds. This work 
carried out a study of a number of algorithms for learning about the manifold of voice in an 
effort to extract the inner geometric structure of the voice signal. For this, they evaluated the 
ability of manifold learning algorithms to separate vowels in a low-dimensional space compared 
to a classical linear dimensionality reduction method. 

The manifold algorithms used were: 

• Locally linear embedding “LLE” [16, 17] 
• Isometric feature mapping “Isomap” [18] 
• Laplacian Eigenmaps [19] 

These algorithms will be explained in the next section.  
The figure 3 was drawn from article. 

 

Fig. 3. 600 tokens of each the vowels ‘aa’, ‘uw’ and ‘iy’ within the two dimensional vowel space produced by LLE, 
Isomap, Laplacian eigenmaps and PCA 

These results indicate that manifold algorithms work better than traditional linear methods, 
separating vowels in a low-dimensional space and are able to discover a useful geometric 
structure of the voice. 

Authors: Aren Jansen and Partha Niyogi 

• Institution: The University of Chicago Dept. of Computer Science and Statistics, 
USA 

1. Intrinsic Fourier Analysis on the manifold of speech sounds (2006). [20] 

2. A Geometric Perspective on Speech Sounds (2005). [21] 

3. The Manifold Nature of Vowel Sounds (2007). [22] 
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These three papers have a main goal in common, to motivate and demonstrate the existence 
of a low-dimensional curved manifold structure in voiced speech sounds, and each one have a 
second goal, independently.  

• The first introduces a new spectrogram technique based on the existence of this 
manifolds structure. Also concludes that this representation allows a better phonetic 
distinction in a low-dimensional space. 

• The second exploits the implications of this geometric point of view in human speech 
and shows that manifold structure of speech sounds may be exploited for dimensionality 
reduction, semi-supervised learning and speech representation. 

• The third presents a comparison of representation of phonemes / a / and / ae / using a 
manifold-based Laplacian eigenmap dimensionality reduction algorithm and a 
traditional Principal Component Analysis. 

In these articles we focus on primary objective: the study of the existence of inner geometric 
structure in the speech signal. 

The existence of a manifold structure of the speech signal, as shown in previous articles, has 
several implications and new related applications, for example: 

• If the voice sounds lie in a manifold, representation and classification of speech require 
the estimation of functional maps whose domain is this manifold. This motivates the use 
of Laplacian Eigenmaps [19] to obtain a suitable basis of these intrinsically defined 
functions. This may be used for dimensionality reduction of speech features and to 
define alternative spectrograms that exploit this underlying geometric structure. 

• The manifold structure of the speech sound does not reflect a linear relationship between 
the articulatory space and the acoustic space. Therefore, alternative metric distances 
(such as the geodesic distance), must be considered. 

5 Manifold definitions 

Before continuing, some needed definitions must be done: 
Definition 1. A topological space X consists of a set X together with a collection of subsets 

φ , referred to as open sets, such that the following conditions are satisfied: 

(i) the empty set φ  and the whole set X are open sets, 

(ii) the union of any collection of open sets is itself an open set, 

(iii) the intersection of any finite collection of open sets is itself an open set. 

The collection of all the open sets in a topological space X is referred to as a topology on the 

set X and denotes by ),( τX . 
Definition 2. A base of a topology is a family of open subsets such that any other open set 

may be represented as the union of subsets constituting the base of the topology. 
Definition 3.  Let ),( τX  and ),( SY  be topological spaces; a mapping YXf →:  is called 

continuous if and only if τ∈− )(1 Uf for each SU ∈ the inverse image of any open subset of Y 
is open in X.  
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Definition 4. A homeomorphism between two topological spaces M and N is a bijective 
(=one-to-one) map f : M  N such that both f and f -1 are continuous (with respect to the 
topologies of M and N). 

Definition 5. A topology is Hausdorff, if for any two distinct points x1; x2 there exist two 

disjoint open subsets jU , and .2,1, =∈ jUx jj  
Definition 6. Let M be a topological Hausdorff space with a countable basis. M is called a 

topological manifold if there exists an ℵ∈m  and for every point Mp∈  an open 
neighbourhood Up of p, such that Up is homeomorphic to some open subset Vp of

mℜ . The 
natural number m is called the dimension of M.  This means that a topological manifold Mm is 
locally homeomorphic to the standard m-dimensional vector space

mℜ . 
A manifold is a space that is locally like

mℜ , however lacking a preferred system of 
coordinates. Furthermore, a manifold can have global topological properties. 

6 Manifold learning algorithms 

Jansen and Niyogi [21] shown recently that acoustic features lie in a low-dimension manifold 
that is embedded in an acoustic space of high-dimension. A low-dimension submanifold can 
have a highly non-linear1

The steps followed by the manifolds learning algorithms mentioned above (LLE, Isomap, 
and Laplacian Eigenmaps) begin creating a graph and then reducing the dimensionality. 

 structure that linear methods would not be able to discover. A series of 
manifold learning algorithms (also known as non-linear algorithms, to reduce the 
dimensionality) have been proposed [16, 18, 19], which go beyond the limitations of linear 
methods. 

Assume we have a dataset in a N × D matrix X consisting of N datavectors  xi, ( i = 1, 2, . . . 
, N ) with dimensionality D. Assume further that this dataset has intrinsic dimensionality d 
(where d < D, and often d << D). Here, in mathematical terms, intrinsic dimensionality means 
that the points in dataset X are lying on or near a manifold with dimensionality d that is 
embedded in the D-dimensional space. 

6.1  Isometric feature mapping: “Isomap”  

The key assumption made by Isomap [18] is that the distance along the curve between two 
points is not the straight that connect them, but the shortest path through the points on the curve 
that connect them. The basic idea is to construct a graph whose nodes are the data points, where 
a pair of nodes is adjacent only if the two points are close in RD(D is the dimension of the data), 
and then take the geodesic distance along the manifold between any two points as the shortest 
path in the graph and finally to use multidimensional scaling “MDS” -a classical method for 
embedding dissimilarity information into Euclidean space [24]- to extract the low dimensional 
representation (as vectors in

dR , Dd << ). 

                                                 
1 If we talk about complex spatial relationships, we talk about that the relationship between the data are non-linear, 
and then we can say that the data lie on a non-linear manifold. 

http://planetmath.org/encyclopedia/TransitionMatrix2.html�
http://planetmath.org/encyclopedia/Predicate.html�
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6.2 Locally linear embedding:  “LLE” 

LLE was introduced at about the same time as Isomap. Unlike previous methods, LLE recovers 
global nonlinear structure from locally linear fits. This algorithm is based on simple geometric 

intuitions. Suppose the data consist of N real-valued vectors iX̂ , ( Ni ,,2,1 = ), each of 
dimensionality D, sampled from some underlying manifold. LLE starts with finding the k 

nearest neighbors (based on the Euclidean distance) for each vector iX̂ , Ni ≤≤1 . Let Ni 

denote the indices of the k nearest neighbours of the vector iX̂ . 
 LLE finds the optimal local convex combinations of the k-nearest neighbors to represent 

each original vector. It is equivalent to minimizing the sum of the reconstruction errors ei. 

∑=
i

ieW )(ε  (6) 

where 
2

ˆˆ ∑
∈

−≡
iNj

jijii XWXe should be unaffected by any global translation δ+→ ii XX ˆˆ , 

DR∈δ , give the condition ∑
∈

=
iNj

ijW 1 i∀ , where W is a edge weights matrix. Note that each 

ie  is also invariant to global rotations and reflections of the coordinates. 

 

Then, LLE considers a projection space that has a dimension much smaller than D. Let iŶ  be 

the projection of iX̂  in the projection space. The projections iŶ
are chosen such that the 

following objective function is minimized:  

2

ˆˆ)( ∑ ∑
∈

−=
i Nj

jiji
i

YWYYφ  (7) 

Note that the above is equivalent to finding a lower dimensional representation, such that the 
local convex representations are preserved. It can be shown that with some additional conditions, 
which make the problem well defined, the minimization task can be accomplished by solving a 
sparse N x N eigenvector problem [25]. More specifically, the d eigenvectors associated with the 
d smallest non-zero eigenvalues provide an ordered set of orthogonal coordinates centered on the 
origin. 

LLE Algorithm 

1. Compute the k nearest neighbors of each point iX̂  

2. Compute the weights ijW of a convex combination of the k nearest neighbors that best 

represent the point iX̂ .  
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3. Find a low-dimensional projection iŶ  such that the above local representations are best 
preserved.  

6.3  Laplacian Eigenmaps  

Laplacian Eigenmap algorithm, proposed by Belkin and Niyogi [19], is based on ideas from 
spectral graph theory. This work establishes both a unified approach to dimension reduction and 
a new connection to spectral theory.  

We describe the Laplacian Eigenmap for discrete data. Again, we consider N vectors, iX̂ ,  (
Ni ,,2,1 = ), in the D-dimensional data space . For each vector iX̂ , Ni ≤≤1 , suppose a 

neighbour vector set Ni is computed. A graph identical with the graph in ISOMAP can be 

defined. For any pair of connected points iX̂ and jX̂ , we define a “local similarity” matrix W 
which reflects the degree to which points are near to one another. There are two choices for W: 

1. 1=ijW , if jX̂  is one of the k-nearest neighbours of iX̂ ; 0 otherwise (simple weight 
scheme). 

2. 
2

2

2
ˆˆ

σ
ji XX

ij eW
−−

= , for neighbouring nodes; 0 otherwise. This is the Gaussian heat kernel, 
which has an interesting theoretical justification given in [26]. On the other hand, use of 
heat kernel requires manually settingσ , so is considerably less convenient than the 
simple weight scheme. 

Let D denote a diagonal matrix such that
∑=

j
jiii WD

. Let W denotes the symmetric matrix 
with entries, Nji ≤≤ ,1 . Finally, given a graph and a matrix of edge weights, W, the Laplacian 

graph is defined as WDL
def

−= . Consider the solutions to the problem: 

DfLf λ=  (8) 

where Nf ℜ∈ . Let 110 ,,, −kfff   be the eigenvectors with corresponding eigenvalues 

12100 −≤≤≤= kλλλλ  ; 

000 DfLf λ= , 

111 DfLf λ= , 

  

111 −−− = kkk DfLf λ . 

The eigenvectors associated with zeros eigenvalues is left out and the next m eigenvectors 
are used for the embedding in an m-dimensional Euclidean space. 
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The eigenvalues and eigenvectors of the Laplacian reveal a wealth of information about the 
graph such as whether it is complete or connected. Here, the Laplacian will be exploited to 
capture local information about the manifold. 

Laplacian Eigenmaps Algorithm 

1. Set 



































 ∈
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otherwise
NXif
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22
2ˆˆ σ

 

2. Let F be the matrix whose columns are the eigenvectors of DfLf λ= with 
nonzero accompanying eigenvalues.  

3. Return [ ] NmFY ×=: . 

Local/Global Methods 

Manifold learning algorithms are commonly split into two camps: local methods and global 
methods. Isomap is considered a global method because it constructs an embedding from the 
geodesic distance between all pairs of points. LLE is considered a local method because the cost 
function that it uses to construct an embedding only considers the placement of each point with 
respect to its neighbours. Similarly, Laplacian Eigenmaps and the derivatives of LLE are local 
methods.  

The local/global split reveals some distinguishing characteristics between Manifold learning 
algorithms: local methods tend to characterize the local geometry of manifolds accurately, but 
break down at the global level. For instance, the points in the embedding found by local methods 
tend to be well placed with respect to their neighbours, but non-neighbours may be much nearer 
to one another than they are on the manifold.  

  

Fig. 4. The local/global split 

The behaviour for Isomap is just the opposite: the intra-neighbourhood distances for points 
in the embedding tend to be inaccurate whereas the large interpoint distances tend to be correct. 

The local methods also seem to handle sharp curvature in manifolds better than Isomap. 
Additionally, shortcut edges – edges between points that should not actually be classified as 
neighbours – can have a potentially disastrous effect in Isomap. A few shortcut edges can badly 
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damage all of geodesic distances approximations. In contrast, this type of error does not seem to 
propagate through the entire embedding with the local methods. 

7 Manifolds in Speaker Recognition 

Motivations 
The idea of using the internal geometric structure of the data to improve the data processing 
algorithms is increasingly used in Machine Learning. In fact, most of the problems of learning in 
real life show a geometric structure. An astute use of geometric structure, through a nonlinear 
dimensionality data reduction - recovering meaningful low-dimensional structures hidden in 
high-dimensional data -, should improve the performance of any learning algorithm.  

To provide a motivation for using a manifold structure, consider a simple example shown in 
figure 5 [16]. The two classes consist of two parts of the curve shown in the first panel (row 1). 
We are given a few labeled points and a 500 unlabeled points shown in panels 2 and 3 
respectively. The goal is to establish the identity of the point labeled with a question mark “?”. 
There are several observations that may be made in the context of this example: 

1. By observing the picture in panel 2 (row 1) we see that we cannot confidently classify 
by using the labeled examples alone. On the other hand, the problem seems much more 
feasible given the unlabeled data shown in panel 3. 

2. Since there is an underlying manifold, it seems clear at the outset that the geodesic 
distances along the curve are more meaningful than Euclidean distances in the plane. 
Many points which happen to be close in the plane are on the opposite sides of the 
curve. Therefore rather than building classifiers defined on the plane it seems preferable 
to have classifiers defined on the curve itself. 

3. Even though the data suggests an underlying manifold, the problem is still not quite 
trivial since the two different parts of the curve come confusingly close to each other. 
There are many possible potential representations of the manifold and the one provided 
by the curve itself is unsatisfactory. Ideally, we would like to have a representation of 
the data which captures the fact that it is a closed curve. More specifically, we would 
like an embedding of the curve where the coordinates vary as slowly as possible when 
one traverses the curve. Such an ideal representation is shown in the panel 4 (first panel 
of the second row). Note that both represent the same underlying manifold structure but 
with different coordinate functions. It turns out (panel 6) that by taking a two-
dimensional representation of the data with Laplacian Eigenmaps [23], we get very close 
to the desired embedding. Panel 5 shows the locations of labeled points in the new 
representation space.We see that “?” now falls squarely in the middle of “+” signs and 
can easily be identified as a “+”. 
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Fig. 5. Top row: Panel 1. Two classes on a plane curve. Panel 2. Labeled examples. “?” is a point to be 
classified. Panel 3. 500 random unlabeled examples. Bottom row: Panel 4. Ideal representation of the 

curve. Panel 5. Positions of labeled points and “?” after applying eigenfunctions of the Laplacian. Panel 
6. Positions of all examples 

To study the data nature, we need tools capable of projecting the data in a space where we 
can study its geometric structure. For this, we need the projection to keep the relations between 
the neighbours, and the relations between the neighborhoods of the general structure. Therefore 
the algorithms described above were used in this work. 

This geometric point of view leads to new and exciting ideas in the areas of speech 
recognition, speech signal representation and speaker recognition. 

7.1 Speaker topologic information  

From the previous study, we are motivated to use the manifolds or Hausdorff topological spaces 
in our research, by improving the performance in the area of speaker recognition.  

Our work will be aimed at the following: 

• To obtain a new speaker information of the speech named speaker topology information.  
• To evaluate this new representation in text independent speaker identification or 

verification.  

The main reason for using topology information in speaker recognition is: 

• The intuitive idea that the individual components of a multi-modal density (GMM) are 
capable of modeling the underlying acoustic classes of the acoustic space that 
characterizes the voice of an individual, which can be approximated by a set of 
acoustic classes (representing large groups of acoustic events) such as the vowels, 
consonants or nasals, fricatives, etc [23]. These acoustic classes show dependence on the 
configurations of the vocal tract of each speaker, so they are very useful in 
characterizing a speaker. Clustering is a grouping strategy in the maximum-expectancy 
(EM) algorithm used to obtain the GMM-UBM adapted. Although the clusters models 
do not work well in applications where the data shows a kind of very complex spatial 
relationship, the clusters models are used in this GMM space. Then, an intelligent use of 
geometric structure that is found in the speech should improve the performance of any 
speaker recognition algorithm.  

• The Joint Factor Analysis (JFA) [9] approach has become during the last years the state 
of the art in the field of speaker verification.  This algorithm is used to attack the 
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problem of speaker and channel variability in GMM framework.  The combination of 
JFA and SVM is used in speaker verification [13], in this approach the SVMs uses as 
input data the super vectors obtained by simple stacked means of the JFA model. These 
CF-dimensional super vectors are obtained by simple stacked of C points, each one F-
dimensional, which are the means of the acoustic classes, these means lie on a low-
dimensional topological manifold structure that does not reflect a linear relationship as 
shown in [19-22]. 

It is also important to note that while objects (points) are typically represented by vectors in
nR , the real distance is often different from the distance induced by the ambient space

nR ( 
usually the Euclidean distance). 

Hypothesis  
Gaussian components are typically embedded in a very high dimensional space. However, the 
intuition of researchers always has been that although these components are ostensibly high 
dimensional, there is a low dimensional structure inner it that needs to be discovered. If we 
utilize the inner geometric structure of the underlying space of Gaussian components to 
construct a low dimensional representations, where the components distribution are kept in a 
good condition, and in addition contain new topologic information, should improve the 
performance of speaker recognition algorithm.  

Note that, if this low dimensional representation is a linear subspace, then linear projections 
to reduce the dimensionality are sufficient. Classical techniques like Principal Components 
Analysis and Random Projections may be used to construct classifiers in the new low 
dimensional space. On the other hand, if the components lie on a low dimensional manifold 
embedded in the higher dimensional space, then is necessary do something different. 

7.2 Initial speech data for representation 

Gaussian components lie in a manifold, based on this assumption the next step would be to build 
a graph that captures the geometric structure of the acoustic features of speech signal. To 
construct the graph that represents the nature of the speaker's voice we use the information 
obtained from the GMM-UBM adaptation of the acoustic features, specifically the mean matrix. 

Gaussian Mixture Model (GMM) 

{ }∑= ,,µλ p  

→p  weight vector 

→µ  mean matrix  

∑→  covariance matrix. 

The mean matrix X are drawn from an speech expression, and can be represented as a F x C 
matrix, were F is the dimension of acoustic feature and C is the number of Gaussian 
components.  
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7.3 Algorithm generalization 

To generalize our approach we describe the algorithm using the Laplacian Eigenmaps. 
First, given XF,N

,ˆnx
 initial mean matrix, where N is the number of observation, each n, (n=1,2,…,N), 

is considered one point in F-dimensional data space. For each point  Nn ≤≤1 , the k-
nearest neighbours Vn is computed using the Euclidean distance. Let Vn  and Vz

,ˆnx
 denote the index 

sets of the points that are the neighbor of and zx̂ .Then, we construct a graph where each ,ˆnx  
is a vertex and two vertices has an edge if and only if zn Vx ∈ˆ or nz Vx ∈ˆ . For any pair of 

connected points ,ˆnx and zx̂ be define weight function 1, =znW . Let A denote a diagonal matrix 

such that ∑=
z

znnn WA ,, , W denote a symmetric matrix with entries znW , .   

Then, the Laplacian matrix is computed WAL −= , finally we compute eigenvalues and 
eigenvectors for the generalized eigenvector problem:  

AfLf α=  (9) 

where Nf ℜ∈ , Let 110 ,,, −kfff  be the solution vectors with corresponding eigenvalues 

1100 −≤≤= kααα  . 

The eigenvectors associated with zeros eigenvalues is left out and the next k eigenvectors are 
used for the embedding in a k-dimensional Euclidean space. 

A map from the manifold toℜ is obtained as a result of applying Laplacian Eigenmaps 

method, let f  be a map from the manifold toℜ ,
kFXf ℜ→: .  

Given that f is a eigenvectors set we can define Mk,N as the matrix whose columns are these 
k eigenvectors, Fk << .  

After obtaining the mapping function f of the initial matrix XF,N we need to obtain a base 
change matrix B between XF,N and Mk,N. For this we have to resolve the following equations 
system: 

NkNF MBX ,, * ≈  (10) 

Note that this process can be performed for any of the above described manifold learning 
algorithms.  
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7.4 Nature of the supervector for speaker recognition 

The supervectors are built from the concatenation of the center of the Gaussian components for 
each speaker model; the centers of Gaussian components in each model are represented as a 
means matrix Mi, which is concatenated for columns in a supervector, as follows: 
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 { }CFCCFFi xxxxxxxxxSV ,,2,12,2,22,11,1,21,1 ,,,,,,,,,,,, =  mean super vector “SV” 

where i 

This process is only a transformation of the model mean matrix to a supervector SV with 
FxC-dimensions, converting the matrix into a point on a high-dimensional space which will be 
used later to classify the speaker through a SVM classifier. 

represents the index of each speaker. 

The following scheme graphically illustrates the process.  

 

where i 

Note that as a result of this construction each Gaussian components defines a specific set of 
dimensions in the SV and the union of all components defines the place of the speaker in a high-
dimensions space.  

represents the index of each speaker. 

To better address future work we will illustrate from another point of view the construction 
of the SV taking into account that each column c (1,2,…C) in the Mi matrix correspond to each 
Gaussian component: 

 
 
 
 
 
 



16      Ing. Gabriel Hernández Sierra, Dr. C. José Ramón Calvo de Lara 

 

 

 

 

 

 

 

 

 

 

 
where i 

Note that the order in which means vectors of the Gaussian component are chosen in the 
construction of the SV is not important if the same order is used always for all speakers. 

represents the index of each speaker. 

Then we show in fig 6 as seen a group of means of the Gaussian components of several 
speakers in only two dimensions, each color representing a different acoustic class, each dot in 
an acoustic class is a different speaker. 

 

Fig.  6. Group of means of the Gaussian components of several speakers in two dimensions (x,y) 

From this representation, combined with previous studies a group of potential ways to 
improve the performance of the speaker classifiers are proposed: 

a) A local analysis for each subspace or submanifold of acoustic components looking for a 
new representation which increases the distance between the means of the same 
acoustics class for different speakers, and decreases the distance between the means of 
the same speaker, will allow each submanifold corresponding to this acoustics class in 
the SV to be more discriminative. 

b) A global analysis of the manifold where all the acoustic classes lie, to find a new 
representation in a linear space where the geometric information of the topological 

iM  mean matrix 
Each column represents a means 

vector of a Gaussian component which 
defines an acoustic class.

{ }Fc xxxx ,,, 21 = , 
 

                                                      Cx  

      2x  

  1x  
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structure of these acoustic classes is taken into account, will allow greater discriminative 
power for each SV, built from the new space. 

c) All researchers in the field known that there is a lot of redundant information in the 
speaker acoustic models obtained using the adapted GMM-UBM, which can be 
observed easily increasing the amount of mixtures in the Universal Background Model 
and as result we will obtain an improvement in the EER. This is adversely not 
proportional to the big size reached by the SV of each speaker, which often generates 
more problems than the small benefits in percentage of EER improvement achieved. An 
analysis of the figure 6, which represents a similar nature to the space where the acoustic 
classes exist, shows that in the center of the cloud of points there is greater overlap 
between acoustic classes and if the number of classes increases, the distance between 
them respect to the center of this cloud decreases delicately, in addition to this analysis 
we also rely on our earlier work see [30]. So if we use the topologic information of 
acoustic classes we can reduce the dimension of these classes and the supervector size, 
without greatly affecting the outcome of the classifier.   

From the above analysis we developed three experiments which are described below. 

8 Speaker verification experiment 

Three experiment using speakers of NIST’04 for background data (UBM), 1348 speakers of 
NIST’05 for development data and 380 speakers of Fisher’04 for impostor data were done, in 
order to evaluate the proposed algorithms. The experimental protocol is fixed throughout the 
work. The male section of the NIST’05 primary task is used for development. For this condition, 
one side of a 5-min conversation is given for testing and the same amount for trainng.  

The realization has taken place in the context of the open-source ALIZE toolkit [31, 32] and 
the algorithms Isomap y Laplacian on Matlab. 

Performances are assessed using DET plots and measured in terms of equal error rate (EER). 
The cost function is calculated following NIST criteria [33]. 

Baseline experiment: speaker recognition experiment trained and tested with spontaneous 
sentences. Models were obtained from target data, impostors data and test data using GMM-
UBM adaptation. CF-dimensional input supervectors are obtained stacking means of the 
Gaussian components. SVM classifier is trained with target supervectors and used to score the 
test supervectors.  

The three experiments consisted in the performance evaluation of speaker recognition using 
a new speaker representation in a low dimension space, obtained by the Laplacian Eigenmaps 
algorithm, of the mean matrix of Gaussian component in a closed set of speakers. These mean 
matrixes were obtained by GMM-UBM, as baseline. Input supervectors are obtained stacking 
means of the mixture components in a new space. SVM algorithm was used for classification as 
baseline. 

8.1 Experiment 1. New representation using local information of acoustic classes.  

First experiment consists of dividing by regions all initial space where the acoustic classes lie. 
As we assume that all acoustic classes lie in manifold, then we will divide the original space in 
C-submanifolds where there is a single acoustic class in each c-submanifold. 
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 Mean matrix { }NMMMS ,,, 21 =  Speaker Mean 
matrixes  

where ,iM Ni ,,2,1 = are the mean matrices for N speakers, F is the dimension of each 
Gaussian component, C is the number of Gaussian components of GMM.  

Then, we construct the C subspaces of each Gaussian component for N speakers component. 




























↓↓↓

=

),(),1(

),1(
),(),2(),1(

21

2

111
,

cFMcM

cM
cFMcMcM

F

A

NN

FN
c











  { }Cc ,,2,1 =  Gaussian component 
mixtures. 

For each submanifold we propose to obtain a new representation in one linear space where 
the topologic information intervened in the description of this means. In this new space the 
Gaussian components that belong to the same speaker will be neighbours while the Gaussian 
components of different speakers must be in different neighbourhoods. 

For details of the algorithm go to Algorithm Projections 1. 
From this new representation we construct the SV that will participate in the SVM training 

as well on the  SVM test, for each corresponding speaker. 
The input parameters were: 
Number of neighbors k = 12, number of dimension F = 50, number of Gaussian components 

C = 128, as a result we will have 6400 dimensions for each speaker supervector. Figure 8 shows 
DET curve of experiment. 

 

Fig.  7.  Acoustic classes regions of several speakers in two dimensions (x,y) 
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Fig.  8.  EER and minDCF performances for BaseLine and using the Laplacian algorithm. Analysis for each 
submanifold 

This experiment, using Laplacian algorithm, reflects very similar results as the baseline, 
7.65% ERR (baseline) vs 7.64% EER (Laplacian),  2.91% (baseline) vs 2.88% (Laplacian). This 
negligible improvement using the Laplacian algorithm is not considered as a good result. 

There are several explanations for a not significant improvement in the results: 

1. A possible explanation is the difficult that LLE and Laplacian confront with manifolds 
that contain holes [34]. In addition, LLE and Laplacian tend to collapse large portions 
ofvery close together data in the low-dimensional space, because the covariance 
constraint on the solution is too simple [35]. 

2. Local analysis by submanifolds

3. It is necessary an analysis of the kernel used in SVM for classification. It is possible that 
this kernel is not regulated to the new representation. 

 tends to characterize the local geometry for each 
Gaussian component and is unable to incorporate information from the rest of the 
Gaussian distribution, which carry us to a new experiment. 

8.2 Experiment 2. New representation using global information of the acoustic classes.  

Second experiment involves a global analysis of all initial space where the acoustic classes lie. 
As we assume that all the acoustic classes lie in manifold, we want to find some geometric 
information of the topological structure of the acoustic classes of the speech that better 
characterizes each speaker.  
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 Mean matrix { }NMMMS ,,, 21 =  Speaker Mean 
matrixes  

where ,iM Ni ,,2,1 = are the mean matrices of N speakers, F is the dimension of each 
Gaussian component, C is the number of Gaussian components of GMM.  

Then, we construct an initial space for all C Gaussian components of N speakers. 
c

FNA , = Gaussian component c of all speakers, this step is the same as previous experiment.  
Then all means of Gausssian components are concatenated into a single matrix that defines each 
acoustics class, as a result, a new space of all components is obtained. 
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FNA ,  are concatenate into a single column 

of F-dimensions

where N is the 

. 

number of speakers, C is the number of Gaussian components and F  is the 
dimension. 

 

Fig.  9. Manifold where all the acoustic classes lie in two dimensions (x,y) 

Then, our proposal was to build a manifold that captures the all inner geometric structure of 
the mean of the Gaussian components to obtain a new representation in one linear space where 
the topologic information intervened in the description of this mean. In this space the Gaussian 
components that belong to the same speaker will be neighbors while the Gaussian components of 
different speakers must be in different neighborhoods. 

For details of the algorithm go to Algorithm Projections 2. 
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From this new representation we construct the SV that will participate in the SVM training 
as well on the SVM test, for each corresponding speaker. 

The input parameters were: 
Number of neighbors k = 12, number of dimension F = 50, number of Gaussian components 

C = 128, as a result we will have 6400-dimensions for each supervector. Figure 10 shows DET 
curve of experiment. 

 

Fig. 10. EER and minDCF performances for BaseLine and using the Laplacian algorithm. Global analysis 

This experiment, using Laplacian algorithm, reflects very similar results as the baseline, 
7.65% ERR (baseline) vs  7.48% EER (Laplacian) and  2.91% DCF (baseline) vs 2.79% DCF 
(Laplacian). This negligible improvement using the Laplacian algorithm is not considered as a 
good result. 

This experiment suffers from many of the same weaknesses that previous experiment. 
We believe that a more deeply study on this space must be done in the future, especially 

using the Isomap algorithm which is not used in this experiment by its computational cost and 
the impossibility at this moment to obtain a rigorous mapping function for this algorithm. 

Note that experiments maintain the same dimension in the results, this is because in these 
experiments we focused only on improving EER and not to reduce the dimensions of the data. 
The third experiment can be focused to reduce the size of the data.  

8.3 Experiment 3 New representation obtained by reducing the acoustic components. 

Third experiment involves a global analysis of all initial space where the acoustic classes lie, but 
at the same time reducing dimension. Otherwise, we assume that all the acoustic classes lie in 
manifold and we want to find the geometric information of the topological structure of these 
acoustic classes that better characterizes the speaker, but we will work assuming that each point 
in this space will be defined by the number of Gaussian components
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 Mean matrix { }NMMMS ,,, 21 =  Speaker Mean 
matrixes  

where ,iM Ni ,,2,1 = are the mean matrices of N speakers, F is the dimension of each 
Gaussian component, C is the number of Gaussian components of GMM.  

Then, we construct an initial space for C Gaussian components of all speakers for its F 
dimension. 




























↓↓↓

=

),()1,(

)1,(
),()2,()1,(

21

2

111
,

CfMfM

fM
CfMfMfM

C

A

NN

CN
f











 
CN

fA ,

each matrix 

 matrix built for the dimension f 

CN
fA ,  will have a N x C dimension (number of speaker by number of Gaussian 

components), and Ff ,,2,1 = will be the amount of spaces constructed. For each f we make a 
reduction 2

For each submanifold 

  taking into account the topologic information in each space.  
CN

fA ,  we propose to obtain a new representation in one linear space 
DC RRG →: where the topologic information will intervene in the description of this means. 

For this, we use Isomap and Laplacian Eigenmaps algorithms to obtain a new projection for each 

matriz, DN
f

CN
f AAD ,, )( = , where G is the algorithm used and D represents the new smaller 

dimension, leading to a reduction in the number of Gaussian components for each model D << 
C. 

Later, each speaker models matrix is reassembled from the new space, and                   DF-
dimensional input SV is obtained stacking the vectors for each new speaker matrix.These SV 
will participate in the SVM training as well on the SVM test, for each corresponding speaker. 

For details of the algorithm go to Algorithm Projections 3. 
As a result, dimensionality reduction facilitates, not only, classification, but also 

compression of high-dimensional data. 
The DET curves of speaker recognition experiments are shown in figure 11 and 12, the 

parameters of the first experiment were: 
Baseline, C = 512 Gaussian components, F = 50 dimension and FC = 25600 dimensions for 

each speaker supervector. 

                                                 
2 The intrinsic dimensionality of data is the minimum number of parameters needed to account for the observed 
properties of the data. 
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Isomap reduction, number of neighbors k = 12, number of dimension F = 50, number of 
Gaussian components C = 512, as a result we will have D = 128 Gaussian components with the 
same F-dimension and FD = 6400-dimensions for each speaker supervector. 

 

Fig 11.  EER and minDCF performances for BaseLine and using the Isomap  algorithm 
 

The parameters of the second experiment were: 
Baseline, C = 128 Gaussian components, F = 50 dimension and FC = 6400 dimensions for 

each speaker supervector. 
PCA reduction, number of dimension F = 50, number of Gaussian components C = 128, as a 

result we will have C = 64 Gaussian components with the same dimension and FD =3200-
dimensions for each speaker supervector. 

Laplacian reduction, number of neighbors k = 12, number of dimension F = 50, number of 
Gaussian components C = 128, as a result we will have D= 64 Gaussian components with the 
same F-dimension and FD = 3200-dimensions for each speaker supervector. Fig. 12 shows DET 
curve of experiment. 
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Fig. 12. EER and minDCF performances for BaseLine and using the PCA and Laplacian algorithm 

First experiment using Isomap algorithm, reflects similar results as the baseline, 7.54% ERR 
(baseline) vs 7.49% EER (Isomap) and 2.91% DCF (baseline) vs 2.93% DCF (Isomap). 

Second experiment using Laplacian algorithm, reflects very similar results as the baseline, 
7.65% ERR (baseline) vs 7.95% EER (Laplacian) and 2.91% DCF (baseline) vs 3.34% DCF 
(Laplacian). The PCA shows the worst results of the experiment, 8.53% EER and 3.36 DCF.   

Not an improvement in EER and DCF were obtained, but in this experiment we focus on 
reducing the dimension of the supervectors, which were managed successfully showing the large 
amount of redundant information that exists in the original supervectors. If we compare the SV 
dimensions in the first experiment, baseline has 25600 dimensions and experiment has 6400 
dimensions that is 1/4 of the original size, which is a significant reduction keeping the same 
EER. In the second, baseline has 6400 dimensions and experiment has 3200 dimensions that are 
half the size, which is a significant reduction too, although in this experiment, the EER is 0.3 % 
worse. 

9 Future work 

We proposed to continue working in the experiments 1 and 2 but using Isomap algorithm with a 
small group of speakers, reducing the computational cost of the algorithm which could do not 
affect the accomplishment of the results and could achieve an optimum data representation. 

In our future work we will use the means of the GMM-UBM adapted by phonetic segments 
in one signal for each speaker. 

a) Split the speech signal or the MFCC feature matrix by phonetic segments and train a 
model for each segment using GMM-UBM adapting. 
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b) Then combine the Gaussian components of all models of the same signal to obtain a set 
of components for each mixture. This combination achieves the capture, for each set of 
this mixture, of the dynamic behavior of the signal. 

c) Using the topological tools for projecting on a new space each set of components, where 
is contained the dynamic behavior information and the topological structure information. 

d) Perform this process for each speaker and follow a similar process to the baseline for 
classification.  
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Anexo 

The proposed algorithm 1 to obtain new representations 

Algorithm Projections 1 

is:  

Input: iM  i = 1,…,N mean matrixes of every speaker (target, impostor and test). 

Train Algorithm Baseline 1 

Input:      FC
iSV  i = 1,…,N  Stacked the Gaussian component mean for each target 

speakers model ( iλ ), where FxC is of dimension of the super vectors. 

                 FCVS

 Stacked the Gaussian component mean for a set of impostor 

speakers models, where FxC is of dimension of the super vectors. 

 Output:  iModelSVM i = 1,…,N, Support vectors of each speaker used in de 
training.  

For each i in N  

iModelSVM = SVM( FC
iSV , FCVS


)  Get support vectors that are between  

iSV and all the impostor set. 

End 

 

Test Algorithm  

Input:   FC
iSV  i = 1,…,T  Stacked the Gaussian component mean for each test 

speakers model ( iλ ), where FxC is of dimension of the super vectors.  

              iModelSVM i = 1,…,N, Support vectors of each  target speaker 

Output:  Likelihood  TNLLH ,  

For each i in N 
        For each j in T 

jiLLH , = SVMtest ( iModelSVM , FC
jSV )  Compute the likelihood, get score 

value. 

        end 
end 



28   

Output:  Laplacian
kC

iR ,  i = 1,…,N, Ri 

Isomap
kC

iR ,

is the new mean space for each speaker. 

 i = 1,…,N, Ri is the new mean space for each speaker. 

For each c in C  
c

FNA , = Gaussian component c of all speakers iM  

Laplacian
kN

cP ,  = Laplacian algorithm ( c
FNA , ). 

Isomap
kN

cP ,     = Isomap algorithm ( c
FNA , ).  

end 

To obtain the projection for 
each Gaussian component of 

all speaker, for each algorithm 

Laplacian
kC

iR , =[
Laplacian

ki
CLaplacian

ki PP ,,
1 ,, ] 

Isomap
kC

iR , =[
Isomap

ki
CIsomap

ki
Isomap

ki PPP ,,
2

,
1 ,,, 

] 

For each speaker 
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The proposed algorithm 2 to obtain new representations is:

Algorithm Projections 2 

  

Input: iM   i = 1,…,N mean matrixes of every speaker (target, impostor and test). 

Output:  Laplacian
kCR ,  R 

Isomap
kCR ,

is the new mean space. 

 R is the new mean space. 

FNxCA , , Laplacian
kNA , ,  Isomap

kNA ,   empty matrix, k new dimension. k<< F. 

For each c in C 
c

FNA , = Gaussian component c of all speakers iM  

FNxCA , = [ FNxCA , ; c
FNA , ] . is concatenated into a single column NxC of F-

dimensions 

end 

Laplacian
kNxCP ,  = Laplacian algorithms ( FNxCA , ). 

Isomap
kNxCP ,     = Isomap ( FNxCA , ).  

To obtain the projection 
for all Gaussian 

component of all speaker, 
for each algorithms 

Laplacian
kNxCP ,  = 

'

,
Laplacian

kNxCP  transpose 

Isomap
kNxCP ,     = 

'

,
Isomap

kNxCP    transpose 

For each c :N: in NxC 
Laplacian

kNA , = Laplacian
kNxCP , (c, c+N-1) Gaussian component c of all speakers (X)

Isomap
kNA ,

. 

= Isomap
kNxCP , (c, c+N-1)      Gaussian component c of all speakers (X)

Laplacian
kCR ,

. 

= [ Laplacian
kCR , ,

'
,

LLE
kNA ]  the components of all speaker were 

assembled 
Isomap

kCR , = [ Isomap
kCR , ,

'
,

LLE
kNA ]  the components of all speaker were assembled 

end 
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The proposed algorithm 3 to obtain new representations is:  

Algorithm Projections 3 

Input: iM   i = 1,…,N mean matrixes of every speaker (target, impostor and test). 

Output:  Laplacian
FxkNR ,  R 

Isomap
FxkNR ,

is the new mean space. 

 R is the new mean space. 

Laplacian
FxkNR , , Isomap

FxkNR , , empty matrixes. k new components. k<< C. 

For each f in F 
f

CNA , = the f-dimension of each component for all speaker iM  

Laplacian
kNP ,  = Laplacian algorithms ( f

CNA , ). 

Isomap
kNP ,     = Isomap ( f

CNA , ).  

To obtain the projection 
of the f-dimension for all 

Gaussian component of all 
speaker, for each 

algorithms 

Laplacian
FxkNR ,  = [ Laplacian

FxkNR , , Laplacian
kNP , ] are places each new k-dimension in 

the corresponding component. 
Isomap

FxkNR ,  = [ Isomap
FxkNR , , Isomap

kNP , ] are places each new k-dimension in the 
corresponding component. 

end 
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